
Stereo Correspondence
for Slanted Surfaces:

Local and Global Methods

Bachelor’s Thesis

Jean Marc Roth

Supervisor:
Prof. Dr. Joachim Weickert

Advisors:
Dr.-Ing. Andrés Bruhn

Natalia Slesareva, M.Sc.

Reviewers:
Prof. Dr. Joachim Weickert

(Saarland University, Saarbrücken, Germany)

Dr.-Ing. Bodo Rosenhahn
(Max-Planck-Institute for Computer Science, Saarbrücken, Germany)

U
N I

V E R S IT A
S

S
A

R A V I E N

S I
S

Saarland University
Faculty of Natural Sciences and Technology I
Departments of Mathematics
and Computer Science
Mathematical Image Analysis Group

Saarbrücken, March 2008

Statement

Hereby I confirm that this thesis is my own work and that I have
documented all sources used.

Saarbrücken, March 4, 2008

J. M. Roth

Declaration of Consent

Herewith I agree that my thesis will be made available through
the library of the Computer Science Department.

Saarbrücken, March 4, 2008

J. M. Roth

Abstract

The usual stereo correspondence problem compares regions of images that
are supposed to be frontal-parallel planes, which introduces systematic errors.
In this thesis, we will investigate special stereo correspondence particularly
able to correctly detect slanted surfaces by explicitly modeling first order
geometry. This goes toward a more general and smart way of modeling what
the real world actually consists of.

First, we show a local method in which we build in support for first order
geometry by means of disparity derivatives, which help to account for pers-
pective distortion of first order surfaces encountered from different views.
This results in the use of a deformed window for the local region matching
method and also the possibility to reconstruct the scene using surfaces de-
scribed by their normal vectors. We then show how these normal vectors can
be used to build a smoothness assumption that can invalidate what proba-
bly are bad matches using an iterative procedure and provide some sort of
filling-in.

Afterwards, in order to contrast the local method, we develop a global
method, into which we build a similar constraint via smoothness assump-
tions. We first model the problem the classical way using an energy func-
tional containing data and smoothness terms. Then, we enhance the classic
Horn/Schunck method to account for first order surfaces by adding a higher-
order smoothness assumption. After that, we discretize this energy functional
and minimize it using differential calculus. We show complete stencils and
boundary conditions.

Finally, a comparison of the local and global methods with several pa-
rameters is performed using a synthetic and a real-world scene, where one
contains many and the other one few slanted surfaces. We give both quanti-
tative and qualitative evaluations of the results by means of objective error
measures and subjective visual inspection, respectively.

Acknowledgments

I would like to thank Natalia Slesareva and Andrés Bruhn for taking their
time to answer and discuss all my questions in-depth. I would also like to
thank Prof. Weickert for the freedom he left me starting this thesis at my
own pace.

Thanks go out to Andrés Bruhn for providing a framework and Stephan
Didas for providing hints for Chapter 4.

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Existing Methods . 10
1.3 Problem Formulation . 12
1.4 Overview . 13

2 Preliminaries 15
2.1 Basic Operations and Algorithms 15
2.2 Camera and Epipolar Geometry 19

3 Local Method 25
3.1 Region-Based Matching Metrics 25
3.2 Deformed Window SSD . 27
3.3 Disparity Derivatives Demystified 28
3.4 Geometric Contextual Information 32

4 Variational Method 37
4.1 Modeling . 37
4.2 Discretization and Minimization 42
4.3 Solving . 52

5 Experimental Results 55
5.1 Error Measures . 55
5.2 Parameters and Implementation Details 56
5.3 Evaluation . 60

6 Summary and Outlook 87

A Diffusion Process in Local Method 89
A.1 The Problem . 89
A.2 Our Improved Method . 89

7

8 CONTENTS

Chapter 1

Introduction

1.1 Motivation

The reconstruction of a three-dimensional object from two-dimensional im-
ages has always been a daunting task for machines, since they lack the a
priori knowledge indigenous to human beings. As such, the ultimate goal of
computer vision is to extract information about a 3-D world from 2-D images.
There even exists a method that uses only one (!) 2-D image [HEH05].

The standard way of constructing a 3-D model from 2-D imagery consists
of the following steps, which are called the 3-D scanning pipeline [Goe03].

Calibration
Estimation of the intrinsic and extrinsic camera parameters.y

Scan
Acquisition of disparity maps from a stereo or multi-view image source.y

Registration (multi-view only)
Alignment/Matching of the obtained individual data sets into a single cloud of points.y

Triangulation
Merging the point cloud into a triangle mesh.y

Post-Processing
Smoothing and Decimation.

This work will focus on step two: the acquisition of high quality disparity
maps.

9

10 CHAPTER 1. INTRODUCTION

1.2 Existing Methods

Most computer vision problems are matching problems, and stereo corres-
pondence makes no exception. There exist a wide range of procedures, from
very simple local over global methods, to any combination or sequence of
local and global ones, so-called cooperative methods [SS02].

Generally, stereo algorithms perform subsets of the following tasks: match-
ing cost computation and aggregation, disparity computation, optimization
and refinement.

The matching cost computation is done by methods like sum of squared
differences (SSD) [Ana87] or normalized cross-correlation (NXC); other well-
known methods are squared intensity differences and absolute intensity dif-
ferences [BBH93, Han74]. There also exist binary match costs, using features
like edges [Can86] or the sign of the Laplacian; they are however not very
well applicable to dense stereo methods [Nis87].1 These methods can be
extended to SSSD (sum of sum of squared differences) and SSAD (sum of
sum of absolute differences) in a multi-view setting and can be generalized
to arbitrary camera configurations (converging cameras) [OK91, Col96].

Local and window-based methods perform the matching cost aggregation
by summing or averaging over a support region in the disparity space image
(x, y, d), where (x, y) denotes the position in the image (usually the left image
is the reference) and d(x, y) the disparity obtained at that pixel. This sup-
port region can be two-dimensional at a fixed disparity, or three-dimensional
in disparity space. The first favors frontal parallel surfaces (surfaces that
are parallel to the camera’s image plane) and uses square windows, Gaus-
sian convolution, shiftable windows, windows with adaptive size [KO94], etc.
[Vek01]. The second (3-D support region) supports slanted [BT99, LZ05] and
curved surfaces [LZ06]. An alternative way of aggregating is diffusion, i.e.
repeatedly adding to each pixel’s cost the weighted values of its neighboring
pixels’ costs [SS96].

Disparity refinement allows for example to extend disparity information
from a small quantized to a more continuous-appearing set of values (sub-
pixel refinement), for example by interpolating between two integer values.
Depending on the method used, edges might be blurred, if two adjacent pixels
belong to two different surfaces. Furthermore, “holes” in the information can
be filled in using such interpolation techniques. A median filter might help
removing obvious outliers of small size.

As far as disparity computation is concerned, stereo algorithms can be
broken down into three major categories, each of which we will now visit in
more detail.

1dense stereo method : a stereo matching method that produces valid output for every
input pixel (there is no “don’t know”)

1.2. EXISTING METHODS 11

Local methods focus on the matching cost computation and aggregation
step and many times include smart disparity refinement techniques,
which make them however less transparent and more difficult to prove
whether they are mathematically sound.

For each pixel, the disparity with the highest or lowest cost value
(depending on the method) is chosen. Drawbacks are that all other
matches (even if they are only slightly from the maximum/minimum)
are thrown away. Also, each pixel in the reference image is matched to
one pixel in the other image, but the inverse is not enforced, which can
lead to occlusions2 generating matching problems. There exist plain
local and local differential methods, like the Lucas/Kanade method
[LK81].

Global optimization methods (variational methods) mainly consist of the
disparity computation and optimization step. They are formulated in
an energy minimization framework:

E(d) =

∫
D(d) +

∑
i

αiSi(d) dx dy . (1.1)

E is a so-called functional (a function taking function(s) as argument);
it contains a data term D which measures how well the disparity func-
tion d(x, y) agrees with the input image pair, as well as smoothness
terms Si which encode the smoothness assumptions made by the in-
dividual algorithm, i.e. trying not to deviate “too much” from the
neighborhood. It does this in order to help solve the aperture prob-
lem, which arises if we only have information about parts of a scene
(through an imaginary aperture) and therefore cannot always tell the
actual direction in which things are moving, since many directions are
possible considering the little information we have.3 The regularization
parameters αi state how important the terms are with regard to each
other.

The Horn/Schunck method is one example of such a method [HS81].
Using more elaborate smoothness terms can help preserving edges, this
is called discontinuity preservation. There also exist Bayesian interpre-
tations of this problem as well as Markov networks. The smoothness
term can also be made dependent, not only on the disparity, but on the
intensity difference to neighboring pixels, or both. The main distinction
is in the minimization method used: graph cuts [BG07, BVZ01], diffu-
sion [SS96], belief propagation, genetic algorithms, simulated anneal-
ing, etc. [Dev74]. A different class of global optimization algorithms
are those based on dynamic programming.

2occlusion: something which was visible in one image, but is no longer visible in another
image, because of its new angle to the camera, or because of the line-of-sight being blocked
by another object closer to the camera

3We rarely have knowledge of the entire “world”.

12 CHAPTER 1. INTRODUCTION

Global methods always have the advantage that one does not have to
deal with outliers as in local methods. Additionally, global methods
give a filling-in effect for small data terms, which is when the smooth-
ness term takes over and propagates information from areas where more
information is available. This results in dense flow fields without per-
forming subsequent interpolation steps (no subpixel refinement).

Cooperative algorithms are inspired by the human stereo system itself
[SS02]. These algorithms perform (iteratively) local computations,
however they use nonlinear operations that, in the end, perform simi-
lar to global optimization. Some operate in a segmented image, others
use a scale-space approach, i.e. find results on a coarse scale and then
refine these to a finer scale, in order to correctly determine the global
minimum of the non-convex functional [BAHH92].

In general, occlusions pose problems, as do texture-less regions and re-
peating patterns. In practice, it can be very useful to be able to obtain the
information where there is no information available (no solution, or worse,
an infinite number of solutions), however this is mostly a feature of global
methods.

Finally, there are a variety of real-world and synthetic sequences to test
stereo algorithms on. There does not yet seem to exist an artificial intelligence
capable to cope with all kinds of situations, and our overview is all but
exhaustive. One may very well conclude that there is always one certain
combination of methods that performs best for one specific application and
that the ultimate goal of computer vision is to unite those methods.

1.3 Problem Formulation

A general problem with many traditional stereo algorithms is the explicit or
implicit use of the frontal parallel plane assumption, i.e. the assumption that
all surfaces in the scene are parallel to the image plane of the camera. This
is however not the general case — consider for example the case of slanted
or curved surfaces, in which this assumption no longer holds, see Figure 1.1.

Therefore, in the local method, disparity derivative information is used,
which essentially indicates where the search window has to be deformed from
the reference image to the other image [LZ05].

As far as the global method that we are proposing is concerned, we will
model the slanted surfaces using higher-order regularization, thus only pe-
nalizing surfaces which are strictly of higher order than first order.

While adjusting our implementations for the deficiency of implicitly only
considering frontal-parallel planes, the acquisition of the initial disparity map
via simple area-based matching, like sum of squared differences or cross cor-
relation, is very error-prone in itself. This is probably due to its simplicity:

1.4. OVERVIEW 13

Figure 1.1: An example how the frontal parallel plane assumption usually is not fulfilled.
Note the tangent plane Tp(S) at point p(x, y, z), which is not parallel to either image plane.
(The corresponding parallel plane at point p is shown with dotted lines.)

it only considers intensity values, which might match regions (assumed pro-
jections of the same scene point into both images) that are in fact not related
at all, except sometimes by chance.

By letting a human observer give a rough estimate of the maximum dis-
parity of the scene, one can already restrict the search space a lot, giving no
rise to the most impossible outliers. As a further measure, we will (in the
local method) not only remember one match per pixel for ongoing computa-
tions, but several ones. Evaluating the geometry of the local neighborhood is
then going to tell us which is the correct one, by using an iterative procedure
to fill-in the information from trustworthy neighboring pixels.

The global method already comes with the filling-in feature with no addi-
tional effort. Its smoothness term provides nothing else than diffusion from
neighboring areas in areas where the data term is at a loss providing a cor-
respondence.

1.4 Overview

In Chapter 2, we will introduce our syntax and remind the reader of some
basic operations and geometry that is used throughout this work. In Chap-
ter 3, we will introduce already existing algorithms that we have used as a
foundation for our implementation of the local method. Appendix A shows
an important modification that we have made to one of those algorithms.
In Chapter 4, we will present our novel variational approach where we build
in similar constraints. Chapter 5 will then give qualitative measurements
and compare the local and global method systematically. Finally, Chapter 6
will summarize our work and give an outlook of possible related work in the
future.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Basic Operations and Algorithms

A discrete grayscale image is defined as a mapping from a (usually rectangular
and two-dimensional) domain Ω2 = {0, 1, . . . , n1} × {0, 1, . . . , n2} 3 (x, y),
sometimes just noted Ω, to a co-domain N ⊂ N:

I : N2 ⊃ Ω2 → N ⊂ N
(x, y) 7→ I(x, y) = Ixy ∈ {0, 1, . . . , 2n} .

(2.1)

In our case, the co-domain specifies a gray value, which usually is an element
of {0, 1, . . . , 2n}, n, n1, n2 ∈ N. In the field of stereo vision, we often use a
disparity space image, i.e. the co-domain encodes the disparity (displace-
ment) of a certain pixel as gray value, i.e. Ixy = cd where c denotes a scaling
constant and d the disparity at (x, y).

2.1.1 Derivatives, Approximations and Notation

Derivatives and Vector-Valued Functions

In the continuous setting, we will denote derivatives of a 1-D function f(x)
as df

dx
(x) or f ′(x), depending on the brevity required. In the higher-order case

we write: f (n)(x) or dn

dxn f(x) as the nth order derivative of f at the point x.

A normal character with a subscript like hx does however not indicate
the derivative of a function but only a fixed scalar value of some sort (e.g.
element of a vector value) — its meaning will be available from the context.

In a multi-dimensional setting we will use partial derivatives like ∂
∂xi

f =

∂xi
f . In the higher-order multi-dimensional case, the notation used is ∂nf

∂xn
i

=

∂n
xi

[f], or for example ∂n1+n2f

∂x
n1
i ∂x

n2
j

= ∂n1
xi

∂n2
xj

[f] for mixed derivatives, with f =

f(x1, . . . , xn), i, j ∈ {1, . . . , n}, n, n1, n2 ∈ N.

The set of all first order derivatives (the gradient) is usually compactly

expressed as∇nf =
[

∂f
∂x1
· · · ∂f

∂xn

]T
and the matrix containing all second order

15

16 CHAPTER 2. PRELIMINARIES

derivatives, the Hessian, consequently as ∇2f or H(f).

xR
T =

[
x1 · · ·xn

]T
=

x1
...

xn

 = xC and xC
T =

x1
...

xn


T

=
[
x1 · · ·xn

]
= xR

denote the transpose of the row and column n-vector xR and xC, respectively.

We write vectors in bold lowercase letters (v), matrices or vector fields in
bold uppercase letters (N), and important matrices that usually have their
own name in calligraphic letters (H).

Discrete versions of these derivatives (finite difference approximations)
will be introduced as they are needed.

Taylor Series

The Taylor series is a representation of a function as an infinite sum of terms
calculated from the values of its derivatives at a single point.

Definition 2.1.1 The Taylor series of a 1-D function f which is infinitely
many times differentiable in a neighborhood of a real (or complex) number a,
is the power series

T (x) = f(a)+
f ′(a)

1!
(x− a)1 +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · · , (2.2a)

which in a more compact form can be written

∞∑
n=0

f (n)(a)

n!
(x− a)n , (2.2b)

where n! is the factorial of n, f (0) = f , (x− a)0 = 1 and 0! = 1.

Its general formula in a multi-dimensional setting is:

T (x1, · · · , xd) =
∞∑

n1=0

· · ·
∞∑

nd=0

∂n1

∂xn1
1

· · · ∂nd

∂xnd
d

f(a1, · · · , ad)

n1! · · ·nd!
(x1 − a1)

n1 · · · (xd − ad)
nd

= f(a) +∇f(a)T(x− a) +
1

2
(x− a)T∇2f(a)(x− a) + · · · .

(2.3)

Taylor Series expansion up to first order is called linearization.

2.1. BASIC OPERATIONS AND ALGORITHMS 17

Vector Fields

Definition 2.1.2 A vector field V on an open set O ⊂ Rn is a function

which associates a vector V(x) to each point x =
[
x1 x2 x3

]T
of O:

V : O ⊂ Rn → Rn

V(x) 7→


V1(x)
V2(x)

...
Vn(x)

 = v ,
(2.4)

with Vi : O → R and i ∈ {1, . . . , n}.

In a practical example, vector x can be seen as the location in Euclidean
space where one wants to “extract” the corresponding result vector v from.
Vi then extracts the ith coordinate of v at that location.

2.1.2 Numerical Solvers

Solving linear systems of equations fast and efficiently is a field of its own. In
this subsection we give an overview of the most important numerical solvers
and we then describe the one we use in a little more detail [Bru07]. We
however omit proofs of convergence etc., as they are beyond the scope of this
thesis. We consider stationary iterative methods only [Saa03].

Formulation as Fixed Point Iteration

A system of equations (or a single equation) can often be recast as a fixed-
point problem for a related function. Usually, iterative schemes of the form
xk+1 = g(xk) are used, where g is a suitably chosen function whose fixed
points are the solutions for f(x) = 0, starting with an initial guess x0 [Hea01].

Definition 2.1.3 Given a function g(x), a value x such that

x = g(x) (2.5)

is called a fixed point of the function g, since x is unchanged when g is applied
to it.

Geometrically, the fixed points of a function are the point(s) of intersection of
the curve of the function and the line y = x. If g(x) is a continuous function,
{xn}∞n=0 is a sequence generated by fixed point iteration and limn→∞ xn = x,
then the fixed point iteration is said to converge, otherwise it diverges.

The question now is: how can we solve the linear system of equations
Ax = b? We use matrix notation to compactly describe the linear system

18 CHAPTER 2. PRELIMINARIES

of equations. Let us quickly show an example of a system of equations with
two equations and two unknowns:[

A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

=

[
b1

b2

]
︸︷︷︸

b

. (2.6a)

This is equivalent to the following system of equations:

A11x1 + A12x2 = b1 ,

A21x1 + A22x2 = b2 .
(2.6b)

To solve such a system of equations, the idea is to find a “cheap” but
accurate approximation of A−1, i.e. the inverse of the matrix A, via the
decomposition A = A1 + A2 and then introduce the fixed point iteration

(A1 + A2)x = b

⇔A1x + A2x = b

FP⇔A1x
k+1 = b−A2x

k

⇔xk+1 = A1
−1
(
b−A2x

k
)

.

(2.7)

k indicates the respective step in the iteration. Such a method is called sta-
tionary because A−1

1 , A2 and b do not change over the iterations. Formally,
this is a fixed point iteration with iteration function g(x) = A1

−1
(
b−A2x

k
)
.

A frequent approach is to do the decomposition like

A = D− L−U , (2.8)

where D is the diagonal part, L the strictly lower triangular part and U the
strictly upper triangular part of the matrix A, respectively.

The Jacobi Method

In the Jacobi method one sets A1 = D (diagonal matrices are simple to
invert), and A2 = −L−U. This results in

xk+1 = D−1
(
b + (L + U)xk

)
. (2.9a)

Often, one uses the element-based notation. This gives in the ith equation
(see (2.6a)):

n∑
j=1

Aijxj = bi

⇔ xk+1
i =

1

Aii

(
bi −

∑
j 6=i

Aijx
k
j

)
,

(2.9b)

where n is the number of unknowns and i = 1, 2, · · · , n. We have solved for
the value of xi while the other entries of x remained fixed.

2.2. CAMERA AND EPIPOLAR GEOMETRY 19

The Gauss-Seidel Method

The Gauss-Seidel method is an improved variant of the Jacobi method. In
the Gauss-Seidel method one sets A1 = D − L (this triangular matrix is a
better approximation to A than D alone), and A2 = −U. This results in

xk+1
GS = (D− L)−1

(
b + Uxk

GS

)
. (2.10a)

The element-based notation gives here:

xk+1
GS,i =

1

Aii

(
bi −

∑
j<i

Aijx
k+1
GS,j −

∑
j>i

Aijx
k
GS,j

)
. (2.10b)

As one can see, this method has the advantage that it uses previously ob-
tained results as soon as they are available. As a consequence, one also needs
less storage space as the array containing x can be overwritten and does not
need explicit copying as in the Jacobi method.

The SOR Method

The Successive Over-Relaxation Method (SOR) is an extension of the Gauss-
Seidel method [You50]. The idea behind it is to extrapolate the result of the
Gauss-Seidel method, which in the element-based notation reads

xk+1
i = (1− ω)xk

i + ω
1

Aii

(
bi −

∑
j<i

Aijx
k+1
j −

∑
j>i

Aijx
k
j

)
︸ ︷︷ ︸

xk+1
GS,i

, (2.11)

with the overrelaxation parameter ω ∈ [0, 2[guaranteeing convergence. The
idea is to choose ω such that it will accelerate the convergence towards the
solution. For ω = 1 it is exactly the Gauss-Seidel method.

Usually, the SOR method is two to three orders of magnitude faster than
the Gauss-Seidel method, therefore, for our needs, it will suffice, as it provides
a good compromise between implementation complexity and performance.

2.2 Camera and Epipolar Geometry

At the heart of stereo vision are the cameras and their positioning with
respect to each other and the geometry describing both the cameras’ pro-
perties as well as the relation between the pictures they take.

In the search for a depth (equally disparity) map, we are interested in
finding conjugated points, i.e. two points in different images that result from
the same 3-D scene point. The problem here lies in the estimation of the
disparity, i.e. the distance between two conjugated points. The main idea is

20 CHAPTER 2. PRELIMINARIES

that objects closer to the camera move faster than objects further away from
the camera, when the camera is moved.1

When two or more cameras come into play, we talk about epipolar geom-
etry, otherwise about monocular geometry.

Even though we assume the simplest of camera setups in this work and
we might well do without this section, we nevertheless feel that at least a
quick glimpse into this matter is necessary for the sake of completeness.

2.2.1 Pinhole Camera and Perspective Projections

The process of forming a 2-D image from a 3-D world is called projection.
The process of projecting can be performed in a lot of ways like perspective,
orthographic, oblique, anamorphic, etc..

To keep the theoretical approach simple, the so-called pinhole camera
model is usually used. Such a camera contains no lens and only an infinitesi-
mally small aperture through which all the incoming rays of light pass. This
is a fairly realistic model for a camera system, and it can be described by a
perspective projection. A perspective projection is also called central projec-
tion or pinhole model. The “pinhole” is also known as focal center or center
of projection in literature [TV98].

Figure 2.1: Complete pinhole camera model with world, camera, image and pixel coor-
dinate systems. (Taken from [Bru07])

There exist several coordinate systems, the link between which is made by
the camera parameters, which consist of the so-called intrinsic and extrinsic

1Obviously, it doesn’t matter if we consider one camera that is moved to a new location
while time is “frozen”, in order to take a second picture, or if we just consider two cameras
taking pictures at the same time.

2.2. CAMERA AND EPIPOLAR GEOMETRY 21

parameters and a projection matrix, which we will however not elaborate
upon. All four coordinate system together are depicted as an overview in
Figure 2.1.

A perspective projection maps a point M = (XC , YC , ZC)T from the 3-D
camera coordinate system to a point m = (x, y)T in the 2-D image coordinate
system. In the case of monocular vision, i.e. in the presence of one camera
only, projective geometry is used to describe the scenario.

2.2.2 Multiple Cameras and Epipolar Geometry

When two cameras (or more) view a 3-D scene, there are certain rules that
dictate the relationship between these views. These rules are called epipolar
geometry [Wik08].

Figure 2.2: An example of epipolar geometry with two cameras. (Taken from [Wik08])

Figure 2.2 contains an example of epipolar geometry. In it we see:

. P : a point (x, y, z)T in R3.

. OL, OR: the left and right optical center, respectively.

. pL, pR: the (perspective) projections of P onto the image planes of left
and right cameras, respectively.

. EL: the epipole of the left camera: the projection of the optical center of
the right camera onto the image plane of the left camera.

. ER: the epipole of the right camera: the projection of the optical center
of the left camera onto the image plane of the right camera.

The plane that goes through the point of interest P and the optical centers
of both cameras is called epipolar plane. The line where an epipolar plane

22 CHAPTER 2. PRELIMINARIES

intersects the image plane of a camera is called epipolar line. The epipolar
line in the left camera (EL−pL) is the projection of the optical ray of the right
camera (OR − P) onto the image plane of the left camera, and vice-versa.
Only one epipolar line goes through any image point, with the exception of
the epipole, through which all of them pass. The epipole need not lie inside
the visible image plane of a camera; indeed it does not lie inside the visible
image if the cameras do not “see” each other.2

Epipolar Constraint, Orthoparallel and Converging Cameras

For the stereo correspondence problem, using the so-called epipolar con-
straint reduces the search space from 2-D (the entire second image) to 1-D
(only a line in the second image). The conjugated points in two stereo images
are located on the epipolar lines.

The simplest but in reality most unusual case is the one of orthoparallel
cameras, i.e. two identical cameras on the same height with parallel opti-
cal axes. More generally, cameras can be found in arbitrary positions and
orientations, called converging cameras.

After finding the disparity/displacement d of two objects in a stereo pair
of images, depth z in case of an orthoparallel setup can easily be related to
it by

z(x, y) =
fb

d(x, y)
, (2.12)

where f is the focal length of the lens and b the stereo baseline (distance
between the two cameras). This equation results from the properties of
perspective projections and especially the Intercept Theorem.

The process of creating a stereo pair with horizontal epipolar lines (like
if there had been an orthoparallel camera pair) out of a converging setup is
called rectification (Figure 2.3).

In this work, we always assume a rectified stereo pair, therefore we need
not give details on the converging setup. It is however worth saying that in
converging camera setups the so-called fundamental matrix comes into play
— it gives the relation between a point in the one image and the (epipolar)
line containing its correspondence in the other image. With orthoparallel
cameras, epipolar lines in both images are at the same height and horizontal.

2do not have each other in their respective FOV (field of view)

2.2. CAMERA AND EPIPOLAR GEOMETRY 23

Figure 2.3: A rectified stereo pair with converging cameras’ image planes are depicted
in bold. Rectified images are shown with gray lines. (Taken from [TV98])

24 CHAPTER 2. PRELIMINARIES

Chapter 3

Local Method

3.1 Region-Based Matching Metrics

Block matching methods compare regions in one image to regions in another
image in order to find similarities. In the following, let us assume a square
window of border size 2m + 1. The distance from the center pixel to one of
the boundaries will therefore be m.

Figure 3.1: A block matching method and its window (m = 3).

3.1.1 Sum of Squared Differences

The sum of squared differences (SSD) method consists of the quadratic cost
function SSD(x, y)

arg min
dx,dy

∑
(∆x,∆y)∈Nxy

(
I−(x+∆x, y+∆y)−I+

(
(x+dx)+∆x, (y+dy)+∆y

))2

,

(3.1)
where I− is the one (usually the left), I+ the other (usually the right) image
and Nxy is the neighborhood around the position (x, y), for example a square
of size (2m+1)× (2m+1) pixels (see Figure 3.1). ∆x and ∆y are small step
sizes in x and y directions respectively, usually ∆x, ∆y ∈ {· · · ,−1, 0, 1, · · · }.
dx and dy are the disparities in x and y direction, respectively (not their

25

26 CHAPTER 3. LOCAL METHOD

derivatives). In practice, one also limits the search space of these disparities
by a maximum disparity.

3.1.2 Cross Correlation

Simple cross correlation (XC) is defined as the maximization of the function
XC(x, y)

arg max
dx,dy

∑
(∆x,∆y)∈Nxy

(
I− (x + ∆x, y + ∆y) · I+ ((x + dx) + ∆x, (y + dy) + ∆y)

)
.

(3.2)

It is derived from the idea to use only the mixed term from SSD∑
(I− − I+)2 =

∑
I2
− − 2

∑
I−I+ +

∑
I2
+ (3.3)

for a better measure of similarity, as the other two terms are more or less
constant.

With normalized cross correlation (NXC) in mind, let us first write down
the mean value of an image window:

I(x, y) =
1

(2m + 1)2

∑
(∆x,∆y)∈Nxy

I(x + ∆x, y + ∆y) . (3.4a)

The deviation from this mean of a point (x+∆x, y +∆y) in a neighborhood
Nxy is expressed as follows:

Î(x, y, ∆x, ∆y) = I(x + ∆x, y + ∆y)− I(x, y) . (3.4b)

Finally, expression (3.5) denotes mean compensated cross correlation
including normalization, usually just called normalized cross correlation,
NXC(x, y)

arg max
dx,dy

∑(
Î−(x, y, ∆x, ∆x) · Î+(x + dx, y + dy, ∆x, ∆y)

)
√∑

Î−(x, y, ∆x, ∆y)2

√∑
Î+(x + dx, y + dy, ∆x, ∆y)2

, (3.5)

where
∑

:=
∑

∆x,∆y∈Nxy
. NXC provides a more robust matching criterion:

invariance with regard to global (linear) changes in illumination between
the patches1. This can however also be considered as a deficiency because
information is lost — it is a matter of perspective.

Note how the argument needs to be maximized (in SSD it was minimized)
for an optimal fit using cross correlation. This has to do with the fact that

1patch: local neighborhood/surface, we also call it “image window”

3.2. DEFORMED WINDOW SSD 27

NXC can be viewed as an inner product aTb
|a||b| = cos(∠(a,b)) between vectors

a and b, e.g.

a =



Î−(x, y,−3,−3)

Î−(x, y,−3,−2)

Î−(x, y,−3,−1)

Î−(x, y,−3, 0)

Î−(x, y,−3, 1)

Î−(x, y,−3, 2)

Î−(x, y,−3, 3)

Î−(x, y,−2,−3)

Î−(x, y,−2,−2)
...

Î−(x, y, 3, 2)

Î−(x, y, 3, 3)



,b =



Î+(x + dx, y + dy,−3,−3)

Î+(x + dx, y + dy,−3,−2)

Î+(x + dx, y + dy,−3,−1)

Î+(x + dx, y + dy,−3, 0)

Î+(x + dx, y + dy,−3, 1)

Î+(x + dx, y + dy,−3, 2)

Î+(x + dx, y + dy,−3, 3)

Î+(x + dx, y + dy,−2,−3)

Î+(x + dx, y + dy,−2,−2)
...

Î+(x + dx, y + dy, 3, 2)

Î+(x + dx, y + dy, 3, 3)



(3.6)

for the half window size m = 3, i.e. the vectors containing all the differences
from the mean of all the pixels for each image’s window. Because of the
properties of the cosine the result lies in the range [−1, 1]. 1 herein denotes
a perfect match, 0 means no correlation at all (orthogonal vectors) and −1
means anti-correlation.

3.2 Deformed Window SSD

If the frontal parallel plane assumption is fulfilled, i.e. every object’s faces
are parallel to the image plane of the cameras, then the previously mentioned
formulation of the problem is correct: for a point (x, y) in the left image we
can compute an exact disparity estimate d based on the point (x − d, y) in
the right image.2

As we have seen before, traditional region-based matching metrics com-
pare small windows in left and right image in order to find matches. By
adding first order disparity information to the problem, these windows are
deformed: we account for perspective distortion. As a matter of fact, adding
first order disparity information also adds information about the surface nor-
mal to our problem statement, i.e. how surfaces are slanted, all of which we
are going to discuss now [LZ05].

Let us now consider a first order approximation of the correspondence of
(x + ∆x, y + ∆y) from the left image in the right image:

x −→ x− d
x=x+∆x⇔ x + ∆x −→ x + ∆x− dFO , (3.7a)

2In the right image, the correspondences are located more left than in the left image,
therefore the subtraction, as we would like our disparities to have positive sign.

28 CHAPTER 3. LOCAL METHOD

with ∆x = {· · · ,−2,−1, 0, 1, 2, · · · }.
The first order approximation dFO of d(x, y) is obtained using a Taylor

series expansion up to first order (linearization)

dFO(x, y) = d +
∂

∂x
d ·∆x +

∂

∂y
d ·∆y . (3.7b)

This results in the following expression for the first order approximation
of the correspondence to be found in the right image

x + ∆x −→ x + ∆x− d− ∂

∂x
d ·∆x− ∂

∂y
d ·∆y . (3.7c)

Using this reformulated similarity measure yields the deformed window
SSD (dwSSD):

arg min
{d, ∂

∂x
d, ∂

∂y
d}

∑
(x+∆x,y+∆y)∈Nxy

(
I−(x + ∆x, y + ∆y)

− Ĩ+(x + ∆x− d− ∂d

∂x
∆x− ∂d

∂y
∆y, y + ∆y)

)2
, (3.8)

where Nxy is the window centered at pixel (x, y).

As the first order approximation probably lies “between” pixels, we are
working with floating point pixel positions: Ĩ+ denotes the (linearly) inter-
polated floating point intensity of the two nearest integer index positions in
the right image. For a 1-D signal I1D(x), linear interpolation is defined as

˜I1D(xf) = (1− α) I1D(xL) + αI1D(xR), with α =
xf − xL

xR − xL

, (3.9)

where xf denotes a floating point pixel position and xL and xR the left
and right pixels respectively, relatively to it. In other words, the resulting
intensity is a sum of weighted neighboring pixels, the weight depending on
the distance of their centers to the floating point position given.

To find the argument that produces the minimum in expression (3.8),
in practice we use Powell’s Direction Set Method, a multi-dimensional mini-
mization algorithm [PTVF92]. We have actually modified it such that once
it has found a value of 0 (which in our case is the best possible), it stops
searching.

3.3 Disparity Derivatives Demystified

We have seen disparity derivatives introduced in the last section. But what
do they mean intuitively?

3.3. DISPARITY DERIVATIVES DEMYSTIFIED 29

First of all, it is important to understand that we are inversely trying to
guess disparity derivatives by looking at how a square surface element in the
one image is best deformed to fit in the other image. Indeed, the algorithm
used to minimize expression (3.8) knows nothing about derivatives of dis-
parity, as the values ∂d

∂x
and ∂d

∂y
are only given implicitly. For the minimizer,

these values are just scalar unknowns, not functions or alike. As such, the
minimizer deforms the window more and more, until it fits best [LZ05].

In the classical sense, one can interpret the scalar value ∂d
∂x

as “the rate
of change of d as we move in the direction of x”. Indeed, this is true: if one
moves from left to right in image space, disparity either increases, decreases
or stays the same. Accordingly, the disparity derivative ∂d

∂x
becomes positive,

negative, or zero, respectively. As disparity is related directly to depth (Ex-
pression (2.12)) we can also say that if ∂d

∂x
> 0, depth decreases and so on.

Analogous explanations hold for ∂d
∂y

.

The meaning of disparity derivatives in the context of the minimization
problem in (3.8) is slightly more complex, but not less evident. Essentially,
disparity derivatives compensate for the perspective distortion encountered
when comparing a window of data in the left image to a window of data in
the right image. Since the camera has moved right, all objects have moved
left. But: the objects that are nearer to the camera have moved more left
than the objects far away. Remember: this was the initial idea of relating
the movement of objects in the two images and extract information from it,
i.e. depth.

Figure 3.2: Two perspectives of a room and a deformed window with ∂d
∂x > 0.

Now take a look at Figure 3.2. You are looking at a room from two
perspectives. The right perspective has had the point of view moved to the
right (compared to the left perspective). Therefore, less of the right wall is
visible in the right perspective, or more correctly: the projection of the right
wall onto the image plane has changed shape. The search window of our
region matching function therefore would make a mistake if it would use a
window of the same size and shape in the right image than in the left image
in order to look for a correspondence: it could never cover the same region
as in the left image.

The two ways that were just presented to perceive disparity derivatives

30 CHAPTER 3. LOCAL METHOD

are indeed equivalent. As an example consider the right wall in Figure 3.2,
which has positive disparity derivative ∂d

∂x
: when we move to the right in

image space from the center of the image, we come closer to the camera,
because the wall moves towards the camera. The correspondence of the
point x in the left image becomes

x− d +
(
1− ∂d

∂x

)
·∆x −∂d

∂y
∆y

in the right image (remember Expression (3.8)), hence the matching window
is compressed in x-direction: moving one step right in the left window moves
a little less than one step right in the right window (see the part of the
expression highlighted in light gray color).

Figure 3.3: Two perspectives of a room and a deformed window with ∂d
∂y < 0.

A similar thing happens in y-direction (see Figure 3.3), however, since we
are working with a rectified stereo pair, i.e. epipolar lines are horizontal, the
y-coordinate in the right image is not affected but its disparity derivative ∂d

∂y

nevertheless has an influence on x (since d is a function of (x, y)). See the
dark gray highlight in the previously shown expression.

We, as a human observer, intuitively know about such properties of 3-D
space and perspective, but the machine would always look for correspon-
dences in a frontal parallel plane, hence systematic error would occur, if
the problem formulation i.e. the window shape was not improved. For all
possible combinations of disparity derivatives, see Table 3.1.

See Table 3.2 for the values of the various disparity derivatives as they
would be for the walls of our room example in Figures 3.2 and 3.3. Also
see Figure 3.4 for a summary of possible deformations and their respective
disparity derivatives. Intuitively, for negative ∂d

∂x
, the window expands in x-

direction, for positive ∂d
∂x

it is compressed in x-direction, and ∂d
∂y

defines how
it is slanted.

Since disparity derivatives encode a plane, they automatically encode nor-
mal vectors, which is one way of defining a plane, as the following definition
will show.

Definition 3.3.1 Let p ∈ R3 be the point we wish to lie in the plane, and
n ∈ R3 a nonzero normal vector to the plane. The desired plane is the set of

3.3. DISPARITY DERIVATIVES DEMYSTIFIED 31

all points r ∈ R3 such that

n · (r− p) = 0 . (3.10)

Computing the normalized surface normal is straightforward: disparity

derivatives
{

∂d
∂x

, ∂d
∂y

}
at (x, y) are a basis of the tangent plane at (x, y). The

direction of the tangent plane’s normal vector therefore is ∂d
∂x
⊗ ∂d

∂y
and its

magnitude is ‖ ∂d
∂x
⊗ ∂d

∂y
‖, where ⊗ denotes the vector cross product. This

yields for all available points the unit normal vector field:

N =

∂d
∂x
⊗ ∂d

∂y

‖ ∂d
∂x
⊗ ∂d

∂y
‖

=
1√

(− ∂d
∂x

)2 + (−∂d
∂y

)2 + 12

0 · ∂d
∂y
− ∂d

∂x
· 1

∂d
∂x
· 0− 1 · ∂d

∂y

1 · 1− 0 · 0


=

(
− ∂d

∂x
,−∂d

∂y
, 1
)T

√
∂d
∂x

2
+ ∂d

∂y

2
+ 1

.

(3.11)

∂d
∂x

∂d
∂y

3-D surface

= 0 = 0 Frontal Parallel
6= 0 = 0 Horizontally Slanted
= 0 6= 0 Vertically Slanted
6= 0 6= 0 General Surface

Table 3.1: Configuration of 3-D geometry and their corresponding first order disparities.

∂d
∂x

∂d
∂y

Location

< 0 = 0 Left Wall
> 0 = 0 Right Wall
= 0 < 0 Ceiling
= 0 > 0 Floor
= 0 = 0 Frontal Parallel Wall (Light Gray)

Table 3.2: 3-D geometry and their first order disparities wrt. room (Figs. 3.2—3).

32 CHAPTER 3. LOCAL METHOD

Figure 3.4: First order disparity derivatives and their corresponding deformed region
matching windows. 1st row (from left to right): zero, positive and negative ∂d

∂x (∂d
∂y = 0)

2nd row (from left to right): zero, positive and negative ∂d
∂y , (∂d

∂x = 0) 3rd row
(from left to right): { ∂d

∂x < 0, ∂d
∂y > 0}, { ∂d

∂x > 0, ∂d
∂y > 0}, { ∂d

∂x > 0, ∂d
∂y < 0} and

{ ∂d
∂x < 0, ∂d

∂y < 0}.

3.4 Geometric Contextual Information

In this section, the method is further extended to include geometric infor-
mation from a local neighborhood, since plain region matching metrics for
obtaining depth information usually do not provide unambiguous results: the
traditional region based matching method may have found several good cor-
respondences for a surface patch i, the best of which we remember. Hence,
in what follows, we have several possible matches (“candidate matches”) in
each point to choose from [LZ05].

The principle of geometric consistency means that, if two points are on
the same surface, the known position and normal measurements at point i
and the computed approximation of the local neighborhood around i should
agree with the actual data (one of the best fits obtained) at the computed
neighboring point, which we will call j. Figure 3.5 shows possible matches
that are not consistent, i.e. have the wrong orientation or lie off the tangent
plane (dashed lines).

The geometric compatibility between two matching pairs can therefore
be expressed as:

gij = 1− 1

m

(
|vij ·Ni|+ |vji ·Nj|

)
, (3.12)

3.4. GEOMETRIC CONTEXTUAL INFORMATION 33

Figure 3.5: A surface patch with consistent and inconsistent correspondences.

where m is a normalization constant.3 By that it follows that 0 ≤ gij ≤ 1.

Let us now take a closer look at the metric in (3.12): The term penalizes
deviations of the neighboring match’s depth from the current point’s depth.
It simultaneously penalizes deviations of the neighboring match’s normal
from the current point’s normal. Here, the dot product does not consider the
angle between the two vectors, but rather the length of the projection of one
onto the other, since vij and vji are not normalized. Obviously, perpendicular
vectors still give the best result, i.e. zero in the dot product; additionally, a
vector v with a large magnitude penalizes an off-zero angle even more.

The expected depth and normal is supposed not to deviate too much from
the current position (smoothness constraint). A resulting value of g close to
1 denotes a good match, and a value close to 0 a bad match. We currently
ignore the orientation of the projection of one vector onto the other, therefore
the absolute value is used.

With this measure in mind, the following iterative update scheme, which
we call geometric support space iterative diffusion (GSID) is then used to
compute the geometric support

st
i =

{
1− di

d
, if t = 0

X ·
∑

j∈Ni
gijs

t−1
j , if t > 0

(3.13)

that a point receives from its neighboring candidate matches, where di is the
initial disparity estimate found at point i using a region matching metric of
choice (see section 3.1), d is a normalization constant, which we choose to be
the maximum disparity of the scene (that is usually defined manually), and
t denotes the time, respectively the iteration number.

The term in the case t > 0 is not the original term from [LZ05]; why we
choose to modify it and what X exactly is, is explained in Appendix A.

3If we do not have a general value of m suitable to normalize, i.e. at least as large
as the maximum value to be normalized, we could also set this as a threshold and ignore
values exceeding it. In our experiments, m = 50, which encompasses all values obtained.

34 CHAPTER 3. LOCAL METHOD

From all of this, and with the assumption that X has normalizing be-
havior4, i.e. X ≤ 1

|Ni|
, it again follows that 0 ≤ st

i ≤ 1,∀t, because |Ni| ≥∑
si =

∑
1si ≥

∑
gisi, si ∈ [0, 1] and gi ∈ [0, 1]. Considerably less than ten

iterations seem to be enough for our method to converge (see Chapter 5 for
results).

This approach reproducibly eliminates many more bad matches (visible
as noise) from the intermediate result, which was simply the best fit obtained
by deformed window SSD inside of the manually defined disparity range.

Note that we have obtained several candidate matches per pixel, therefore
in our implementation we need to iterate over all pixels and all matches in
(3.13) and also consider every match of every pixel in the sums herein. si and
sj denote these sets of fits (there is no further indexing in this mathematical
formulation). As such, the GSID happens over a 3-D (x, y, d) geometric
support region (GSR).

The surface normals are also updated based on the normals of neighbors
that deviate less than ±π

4
radians from the current normal by a least square

fit, in order to reduce the effect of local noisy measurements:

Nt+1
p =

∑
q∈Np

Nt
q√

(
∑

q∈Np
Nt

qx
)2 + (

∑
q∈Np

Nt
qy

)2 + (
∑

q∈Np
Nt

qz
)2

(3.14)

where Nt
q∗ denotes an individual component of the three-vector

Nt
q =

[
Nt

qx
Nt

qy
Nt

qz

]T
which is the vector N(q) at time step t.

For an overview of the algorithm, see Figure 3.6.

4which it does, see Appendix A

3.4. GEOMETRIC CONTEXTUAL INFORMATION 35

Left image Right image

↘ ↙
Integer Disparity

(the best 3 non-neighboring fits are kept)

Minimization
yAlgorithm

Floating Point
Disparity

d

First order disparity derivatives
∂
∂xd, ∂

∂y d

(perspective distortion compensation / normals)y
Geometric Consistency

(geometric support and compatibility)

Geometric Support
y Iterative Diffusion

Final Result

Figure 3.6: Algorithm in a Nutshell. Grey background indicates data that is computed
and kept for each of the initial fits (local minima). Starting from the first minimization,
all values have at least single floating point precision. Each box also explains the intuitive
meaning and purpose of the respective value in parentheses.

36 CHAPTER 3. LOCAL METHOD

Chapter 4

Variational Method

Variational methods are global differential methods. They rely on the solu-
tion of partial differential equations (PDEs) to perform their job. A varia-
tional method offers transparent modeling and provides dense flow fields, un-
like local methods where one usually needs intermediate and post-processing
steps. This disparity refinement (filling-in and sub-pixel accuracy) comes for
free due to the continuous modeling of the problem.

We are designing a solution to the problem at hand by embedding it
into a so-called optic flow problem. This will result in dense flow fields,
but the complicated interactions between pixels herein require to solve large
linear or non-linear systems of equations. Therefore we have introduced
the SOR method in Chapter 2. Additionally, we will use a coarse-to-fine
approach, which makes linearization a valid tool, even in the presence of
large displacements.

4.1 Modeling

We would now like to find an energy minimization formulation similar to
the local method used in the previous chapter and show how we tackle the
problem step by step.

Data Term: From Local To Local Differential Method

We only consider orthoparallel setups, i.e. the complete displacement d =[
dx dy

]T
happens in x-direction only, i.e. dy = 0. The data term must

penalize deviations from the disparity constancy assumption, we have seen
squared differences before:

(I−(x, y)− I+(x + dx, y))2 . (4.1)

We recast the stereo problem as an optic flow problem: we now under-
stand I− to be the image at time t and I+ the one at time t + 1, i.e. we

37

38 CHAPTER 4. VARIATIONAL METHOD

pretend the two images were recorded by the same camera at two points in
time instead of two different cameras at the same point in time but different
locations, which is a different formulation of the same problem. An approach
where the generalized epipolar constraint has been integrated into an optic
flow problem can be found in [SBW05].

The image domain is increased by one dimension (now Ω ⊂ R3), the term
inside the square of (4.1) can be rewritten as

I(x + dx, y, t + 1)− I(x, y, t) = 0 , (4.2)

which says that both images should be more or less similar. This very pop-
ular data term is also called the brightness constancy constraint equation.
Linearizing the part of the term from time t + 1 gives

I(x + dx, y, t + 1) ≈ I(x, y, t) + ∂xIdx + ∂tI . (4.3)

Expression (4.2) then becomes

I + ∂xIdx + ∂tI − I = ∂xIdx + ∂tI = 0 . (4.4)

The previous expression is called the linearized optic flow constraint.

As one can see, what once was the disparity map has now become a 3-D
vector field (where the third dimension is time), also called optic flow:

W : R3 → R3

W(w) 7→

W1(w)
W2(w)
W3(w)

 =

u(w)
v(w)

1

 ,
(4.5)

with w = (x, y, t)T (remember Section 2.1.1 for how vector fields exactly
work). We denote the horizontal flow component with u, and the vertical flow
component with v. One obtains nothing else than a simplified Lucas/Kanade
optic flow method [LK81] with horizontal flow only (v = 0 always). The
“distance” between time steps always is 1 (W3) [Luc84].

Figure 4.1 depicts a simple example of optic flow: at (0, 0, t) we have
displacement W(0, 0, t) = (0, 1, 1)T.

Motion Tensor Notation

We can now reformulate (4.1) using the linearized form (4.4) (with u = dx),
which yields a quadratic form

(I−(x, y)− I+(x + dx, y))2 → (I(x + dx, y, t + 1)− I(x, y, t))2

LIN.
= (∂xIdx + ∂tI)2

u=dx=

[u 0 1
] ∂xI

∂yI
∂tI

2

= (WT∇3I)2 .

(4.6a)

4.1. MODELING 39

Figure 4.1: Optic flow between two frames at times t and t + 1 (frame size 2× 2).

We can then express this quadratic form in motion tensor notation [Bru06]:

(WT∇3I)2 = (WT∇3I)(∇3I
TW) = WT (∇3I∇3I

T)︸ ︷︷ ︸
=:J(∇3I)

W .
(4.6b)

J(∇3I) is a symmetric positive semi-definitive 3 × 3 matrix called motion
tensor.

WTJW =
[
W1 0 1

]∂xI
∂yI
∂tI

� [∂xI ∂yI ∂tI
]W1

0
1


=
[
W1 0 1

] J11 J12 J13

J21 J22 J23

J31 J32 J33

W1

0
1

 ,

(4.7a)

with J11 J12 J13

J21 J22 J23

J31 J32 J33

 =

 (∂xI)2 ∂xI∂yI ∂xI∂tI
∂yI∂xI (∂yI)2 ∂yI∂tI
∂tI∂xI ∂tI∂yI (∂tI)2

 , (4.7b)

where � here denotes the tensor product (matrix multiplication).

Amongst others, the motion tensor notation has the advantage that only
one implementation for all constancy assumptions is required, therefore re-
ducing the workload for experiments, in case of multiple data terms to be
investigated.

Smoothness: From Local Differential To Global Differential Method

We additionally enforce smoothness constraints mentioned in the beginning
of this section. Not only do we enforce smoothness of the flow field gradient,

40 CHAPTER 4. VARIATIONAL METHOD

we additionally penalize locally affine transformations (instead of only locally
constant ones). It is in essence an extended variant of the Horn/Schunck
method [HS81].

This means we have to penalize second order derivatives of the flow field.
Consequently, functions of the type u(x, y) = ax+ by + c are mapped to zero
by the regularizer: those are exactly affine transformations.

All of this makes our method a global differential method with filling-
in effect, the filling-in happening via diffusion from the neighborhood. The
resulting continuous energy functional looks like:

E(W) =

∫
y

∫
x

WTJW + α |∇W|2︸ ︷︷ ︸
F1

+β ‖H(W)‖2
Fr︸ ︷︷ ︸

F2

dx dy (4.8a)

With ∇W = (∇u, 0, 0), we have

|∇W| =
√
|∇u|2 =

√
(∂xu)2 + (∂yu)2 . (4.8b)

Analogously, the Frobenius norm (entry-wise norm) of the Hessian of W is

‖H(W)‖Fr =

√√√√ 2∑
i=1

2∑
j=1

|H(u)i,j|2 =
√

(∂xxu)2 + 2(∂xyu)2 + (∂yyu)2 , (4.8c)

with H(u)i,j being the entry in row i and column j in H(u). We will simi-
larly address specific elements of J using Ji,j in the upcoming sections. The
constants α and β indicate the importance of the respective smoothness as-
sumption; they are called regularization parameters.

We show the assumptions for the global method in comparison with what
the local method did in Table 4.1.

The Warping Strategy: From Small To Large Displacements

If the displacements are small (i.e. in the order of one pixel), linearization
gives a valid approximation (Expression (4.9a)). However, when we start to
deal with large displacements, this formulation is no longer valid. In this case
we postpone the linearization of the constancy assumptions to the numerical
scheme.

E(W) =

∫
Ω

(∂xIu + ∂tI)2 + Sαβ(u, v) dx dy (4.9a)

E(W) =

∫
Ω

(I(x + u, y, t + 1)− I(x, y, t))2 + Sαβ(u, v) dx dy (4.9b)

This however makes the non-linearized functional (4.9b) non-convex, i.e.
it contains multiple local minima and its Euler-Lagrange (E-L) equations

4.1. MODELING 41

Local Method Global Differential Method

SSD fit yielding disparity d differential formulation yielding
displacement vector field W
(data term)

geometric support: neighboring
pixels should be close to each
other in (x, y, d)-space

constancy of the displacement
field gradient (smoothness term I)

geometric support: choose best
neighboring fit based on similar-
ity of normal vectors (bias to-
wards slanted surfaces)

constancy of the variation of the
displacement field gradient, i.e.
the Hessian, allowing affine mo-
tion (smoothness term II)

Table 4.1: Comparison between approaches in local method and in our global differential
method.

have multiple solutions (see Figure 4.2ab). This non-convex optimization
problem will then be approximated by a series of convex optimization prob-
lems, that is, embedded in a coarse-to-fine hierarchy and a convex problem
will be solved at each hierarchy level (see Figure 4.2c).

(a) convex (b) nonconvex (c) hierarchy

Figure 4.2: Convex and non-convex functions. For the non-convex function we indicate
several local minima. We also show the coarse-to-fine hierarchy. (Taken from [Bru07])

In such cases the warping strategy comes into play: it is an hierarchical
incremental fixed point iteration. We use the flow field obtained at coarse
scale (downsampled image) at the next finer scale (determined by scaling
parameter η) to solve the difference problem: technically, we warp the second
image in order to compensate for this estimated motion. We do this until
the finest scale has been reached and sum up all the flow contributions from
all scales [BBPW04, Bru07].

On the coarse grid, linearization is indeed a valid approximation: the
distance from one pixel to the next in the coarse grid is however a larger

42 CHAPTER 4. VARIATIONAL METHOD

distance than the one in the finer grid. This approach might lead to small
objects being unnoticed, since they are not present at all in the coarse grid.

The Euler-Lagrange equation for the non-linearized functional is given by

0 = ∂xI(x + u, y, t + 1) (I(x + u, y, t + 1)− I(x, y, t))

− α∆u + β∆2u .
(4.10)

We introduce the fixed point iteration step

0 = ∂xI(x + uk, y, t + 1)
(
I(x + uk+1, y, t + 1)− I(x, y, t)

)
− α∆uk+1 + β∆2uk+1 .

(4.11a)

We further introduce an incremental computation by the splitting

uk+1 = uk + duk . (4.11b)

We then linearize the data term with respect to duk

I(x + uk+1, y, t + 1) = I(x + uk + duk, y, t + 1)

= I(x + uk, y, t + 1) + ∂xI(x + uk, y, t + 1)duk ,

(4.11c)

yielding the linearized step at fixed point iteration k:

0 =∂xI(x + uk, y, t + 1)(
∂xI(x + uk, y, t + 1)duk + I(x + uk, y, t + 1)− I(x, y, t)

)
− α∆(uk + duk) + β∆2(uk + duk) .

(4.12a)

This can again be related to a convex problem and has therefore a unique
solution. In motion tensor notation we can write:

0 = Jk
11duk + Jk

13 − α∆uk − α∆duk + β∆2uk + β∆2duk , (4.12b)

where Jk = ∇3I(x + uk, y, t + 1)∇3I(x + uk, y, t + 1)T.

This fixed point iteration is then embedded in the previously mentioned
coarse-to-fine strategy.

4.2 Discretization and Minimization

There are two methods for finding a minimum of an energy functional in a
discrete setting. One is writing down its Euler-Lagrange (E-L) equation(s),
setting them to zero and then discretizing them.

However, obtaining the correct boundary conditions can be difficult with
this approach. Especially the formulation using E-L equations usually con-
tains a normal vector to account for the condition at the boundaries, which

4.2. DISCRETIZATION AND MINIMIZATION 43

is especially hard to discretize later on. Correct boundary conditions are
however important, since e.g. the E-L equations resulting from an energy
functional containing the Laplacian and another one containing the Hessian
as smoothness terms are both the same, only their boundary conditions differ.

Therefore, we discretize the energy functional directly, which is the more
difficult way of obtaining a discretization, but which on the other hand au-
tomatically contains the correct boundary conditions. We use the necessary
condition for obtaining a minimum of the energy functional,

0
!
=

∂E

∂u
≈
(

∂E

∂u1,1

, . . . ,
∂E

∂uN,M

)
. (4.13)

We use the ≈ sign to denote that we are going from the continuous to the
discrete setting, i.e. we are approximating.

4.2.1 Discretization

We assume a rectangular grid with grid size hx in x-direction and hy in
y-direction and perform the following discretizations, step by step:

. image : discretization of I,

. image derivatives : discretization of ∂xI, ∂yI, ∂tI,

. motion tensor : the previous two discretizations yield the discretization
of J (in our case only its entries J11 and J13 are relevant),

. flow field : discretization of u, yielding discretization of W ,

. flow derivatives - 1st order : discretization of ∂xu and ∂yu,

. flow derivatives - 2nd order : discretization of ∂xxu, ∂xyu and ∂yyu.

Discretization of Data Term

Based on the grid spacings hx and hy we denote the image value at position
(i, j, t) (t indicates which image we are in) by

Ii,j,t = I ((i− 1)hx, (j − 1)hy, t) , (4.14)

for i = 1, . . . , N , j = 1, . . . ,M and t = 1, 2. N and M are the sizes of the
images in x and y directions, respectively.

By that, we obtain for the derivatives, using averaged central differences
for the space, and forward differences for the time part:

(∂xI)i,j =
1

2

(
Ii+1,j,t+1 − Ii−1,j,t+1

2hx

+
Ii+1,j,t − Ii−1,j,t

2hy

)
, (4.15a)

44 CHAPTER 4. VARIATIONAL METHOD

(∂yI)i,j =
1

2

(
Ii,j+1,t+1 − Ii,j−1,t+1

2hx

+
Ii,j+1,t − Ii,j−1,t

2hy

)
, (4.15b)

(∂tI)i,j =
Ii,j,t+1 − Ii,j,t

ht

= Ii,j,t+1 − Ii,j,t . (4.15c)

ht is usually set to 1 and the image data is mirrored at the boundaries, i.e.
Ii+1,j exists even for i = N , and consequently the derivative at the boundary
is zero.

The discretization of the motion tensor is now straightforward:

(J11)i,j = (∂xI)2
i,j , (J12)i,j = (∂xI∂yI)i,j = (J21)i,j ,

(J22)i,j = (∂yI)2
i,j , (J13)i,j = (∂xI∂tI)i,j = (J31)i,j ,

(J33)i,j = (∂tI)2
i,j , and (J23)i,j = (∂yI∂tI)i,j = (J32)i,j .

Similarly to the image, we discretize the flow field as

ui,j = u ((i− 1)hx, (j − 1)hy) , (4.16)

for i = 1, . . . , N and j = 1, . . . ,M , resulting in Wi,j = [ui,j 0 1]T.

Discretization of Smoothness Term I

We now focus on the term F1 for which we simply use forward finite differ-
ences

F1 = (∂xu)2 + (∂yu)2

≈
(

ui+1,j − ui,j

hx

)2

+

(
ui,j+1 − ui,j

hy

)2

.
(4.17)

Discretization of Smoothness Term II

For the components of the term F2 with respect to one variable only, we use
standard second differences

F21 = (∂xxu)2 + (∂yyu)2

≈
(

ui+1,j − 2ui,j + ui−1,j

h2
x

)2

+

(
ui,j+1 − 2ui,j + ui,j−1

h2
y

)2

.
(4.18)

For the mixed derivatives of the term F2, we use averaged backward/forward
differences, resulting in central differences

F22 = (∂xyu)2

≈

(
1

4

(
ui+1,j+1−ui,j+1

hx
− ui+1,j−ui,j

hx

hy

+

ui+1,j−ui,j

hx
− ui+1,j−1−ui,j−1

hx

hy

+

ui,j+1−ui−1,j+1

hx
− ui,j−ui−1,j

hx

hy

+

ui,j−ui−1,j

hx
− ui,j−1−ui−1,j−1

hx

hy

))2

=

(
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4hxhy

)2

.

(4.19)

4.2. DISCRETIZATION AND MINIMIZATION 45

The complete discrete energy functional thus looks like:

E(W) =
N∑

i=1

M∑
j=1

WT
i,jJi,jWi,j

+ α

((
ui+1,j − ui,j

hx

)2

+

(
ui,j+1 − ui,j

hy

)2
)

+ β

((
ui+1,j − 2ui,j + ui−1,j

h2
x

)2

+ 2

(
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4hxhy

)2

+

(
ui,j+1 − 2ui,j + ui,j−1

h2
y

)2
)

(4.20)

Alternative Discretization of Smoothness Term II

For the mixed derivatives of the term F2, we have tried the alternative ex-
pression

F22 = (∂xyu)2

≈ 1

4

((ui+1,j+1 − ui,j+1 − ui+1,j + ui,j

hxhy

)2

+
(ui+1,j − ui,j − ui+1,j−1 + ui,j−1

hxhy

)2

+
(ui,j+1 − ui−1,j+1 − ui,j + ui−1,j

hxhy

)2

+
(ui,j − ui−1,j − ui,j−1 + ui−1,j−1

hxhy

)2
)

.

(4.21)

The discrete energy functional will be similar to (4.20), except for the mixed
term in its second to last line, which would need to be replaced. There are
many possibilities of discretizing a certain expression. Generally, one can say
the higher the order of consistency of the approximation, the qualitatively
better it will be.

4.2.2 Minimization

Stencil Notation and Scope of Application

A stencil indicates the new value of the center pixel (shown in gray) with
regard to the sum of the neighboring pixels with the given coefficients

(i− 1, j − 1) (i, j − 1) (i + 1, j − 1)
(i− 1, j) (i, j) (i + 1, j)

(i− 1, j + 1) (i, j + 1) (i + 1, j + 1)

46 CHAPTER 4. VARIATIONAL METHOD

Applying a stencil to an image (equally a flow field) means positioning its
center (consecutively) onto each pixel of the image and performing the above-
mentioned operation.

We use operator overloading for stencils: if their centers overlap then
“+” denotes component-wise addition on all overlapping elements, and for
“·” there holds some sort of distributivity law.

As mentioned before, boundary conditions are extremely important. If
the stencil is completely inside the data, there is no problem. However, when
parts of it lie outside the data, special care must be taken to correct the
weights of the elements still inside the image — their sum must e.g. still be
equal to zero, etc.. To that end we introduce the indicator function

χ[xL,xU]×[yL,yU](i, j) =

{
1 , i ∈ [xL, xU] and j ∈ [yL, yU]

0 , else .
(4.22)

which “activates” certain terms in certain regions only. Usually, we use χ
inside of a stencil: then, the argument (i, j) is implicitly given by the position
of the center element of the stencil. xL, yL and xU , yU indicate the lower and
upper bounds, respectively, for the x and y coordinates.

Minimization of Smoothness Term I

In order to yield the corresponding boundary conditions we differentiate with
regard to uk,l which can correspond to either one of the u’s in F1, that is ui+1,j,
ui,j or ui,j+1.

Practically, one can do it this way:

. differentiate F1 with regard to each variable therein,

. perform an index shift setting the center to the variable being differen-
tiated with, revealing the scope of application.

For the first variable, the necessary conditions to be fulfilled for a mini-
mum are:

0 = ∂ui+1,j
F1 = 2

ui+1,j − ui,j

hx

· 1

hx

k=i+1,l=j
=

2

h2
x

(uk,l − uk−1,l) .
(4.23a)

It is not hard to see that the scope of application of the above expression is
[2, N] × [1, M]. This is evident, as uk−1,l is not defined for k = 1. There is
however no general method to see this, except for discretizing the functional
directly. So far, we have the following part of the stencil (we divide by two
on-the-fly):

0 0 0

χ[2,N]×[1,M]
−1
h2

x
χ[2,N]×[1,M]

1
h2

x
0

0 0 0

· u

4.2. DISCRETIZATION AND MINIMIZATION 47

Now we differentiate with regard to the next variable:

0 = ∂ui,j
F1 =

−2

h2
x

(ui+1,j − ui,j) +
−2

h2
y

(ui,j+1 − ui,j)

k=i,l=j
=

−2

h2
x

(uk+1,l − uk,l)︸ ︷︷ ︸
[1,N−1]×[1,M]

+
−2

h2
y

(uk,l+1 − uk,l)︸ ︷︷ ︸
[1,N]×[1,M−1]

. (4.23b)

The scope of application of the respective terms in the above expression is
shown with the underbrace. Up to now, the stencil looks like

0 0 0

χ[2,N]×[1,M]
−1
h2

x

χ[2,N]×[1,M]
1

h2
x

+χ[1,N−1]×[1,M]
1

h2
x

+χ[1,N]×[1,M−1]
1
h2

y

χ[1,N−1]×[1,M]
−1
h2

x

0 χ[1,N]×[1,M−1]
−1
h2

y
0

· u

The third and last differentiation is

0 = ∂ui,j+1
F1 =

2

h2
y

(ui,j+1 − ui,j)

k=i,l=j+1
=

2

h2
y

(uk,l − uk,l−1) ,
(4.23c)

with scope of application [1, N]× [2, M].

After division by two, this results in the following final stencil for the first
order terms (inducing a second order diffusion process):

0 χ[1,N]×[2,M]
−1
h2

y
0

χ[2,N]×[1,M]
−1
h2

x

χ[1,N]×[2,M]
1
h2

y
+χ[2,N]×[1,M]

1
h2

x

+χ[1,N−1]×[1,M]
1

h2
x

+χ[1,N]×[1,M−1]
1
h2

y

χ[1,N−1]×[1,M]
−1
h2

x

0 χ[1,N]×[1,M−1]
−1
h2

y
0

·u

which we call Sxx + Syy.
1

Minimization of Smoothness Term II

We proceed as before; the necessary conditions to be fulfilled for having a
minimum here are:

0 = ∂ui+1,j
F21 = 2

ui+1,j − 2ui,j + ui−1,j

h2
x

· 1

h2
x

⇔ 0 =
ui+1,j − 2ui,j + ui−1,j

h4
x

χ[3,N]×[1,M] ,
(4.24a)

1We do not show Sxx and Syy separately.

48 CHAPTER 4. VARIATIONAL METHOD

0 = ∂ui,j+1
F21 = 2

ui,j+1 − 2ui,j + ui,j−1

h2
y

· 1

h2
y

⇔ 0 =
ui,j+1 − 2ui,j + ui,j−1

h4
y

χ[1,N]×[3,M] ,
(4.24b)

0 = ∂ui,j
F21 = 2

ui+1,j − 2ui,j + ui−1,j

h2
x

· −2

h2
x

+ 2
ui,j+1 − 2ui,j + ui,j−1

h2
y

· −2

h2
y

⇔ 0 = −2
(ui+1,j − 2ui,j + ui−1,j

h4
x

χ[2,N−1]×[1,M]

+
ui,j+1 − 2ui,j + ui,j−1

h4
y

χ[1,N]×[2,M−1]

)
,

(4.24c)

0 = ∂ui,j−1
F21 = 2

ui,j+1 − 2ui,j + ui,j−1

h2
y

· 1

h2
y

⇔ 0 =
ui,j+1 − 2ui,j + ui,j−1

h4
y

χ[1,N]×[1,M−2] , and
(4.24d)

0 = ∂ui−1,j
F21 = 2

ui+1,j − 2ui,j + ui−1,j

h2
x

· 1

h2
x

⇔ 0 =
ui+1,j − 2ui,j + ui−1,j

h4
x

χ[1,N−2]×[1,M] .
(4.24e)

We have already divided by two, giving the stencils:

Sxxxx =

1
h4

x

χ[3,N]×[1,M]
−2χ[3,N]×[1,M]

−2χ[2,N−1]×[1,M]

χ[3,N]×[1,M]

+4χ[2,N−1]×[1,M]
+χ[1,N−2]×[1,M]

−2χ[1,N−2]×[1,M]

−2χ[2,N−1]×[1,M]
χ[1,N−2]×[1,M] ·u

Syyyy =
1

h4
y

χ[1,N]×[3,M]

−2χ[1,N]×[3,M]

−2χ[1,N]×[2,M−1]
χ[1,N]×[3,M]

+4χ[1,N]×[2,M−1]

+χ[1,N]×[1,M−2]

−2χ[1,N]×[2,M−1]

−2χ[1,N]×[1,M−2]

χ[1,N]×[1,M−2]

· u

Component-wise addition yields the stencil that corresponds to (part of)

4.2. DISCRETIZATION AND MINIMIZATION 49

our desired fourth-order diffusion process:

Sxxxx + Syyyy =

χ[1,N]×[3,M]
1

h4
y

χ[1,N]×[3,M]
−2
h4

y

+χ[1,N]×[2,M−1]
−2
h4

y

χ[3,N]×[1,M]
1

h4
x

χ[3,N]×[1,M]
−2
h4

x

+χ[2,N−1]×[1,M]
−2
h4

x

χ[3,N]×[1,M]
1

h4
x

+χ[2,N−1]×[1,M]
4

h4
x

+χ[1,N−2]×[1,M]
1

h4
x

+χ[1,N]×[3,M]
1

h4
y

+χ[1,N]×[2,M−1]
4

h4
y

+χ[1,N]×[1,M−2]
1

h4
y

χ[1,N−2]×[1,M]
−2
h4

x

+χ[2,N−1]×[1,M]
−2
h4

x

χ[1,N−2]×[1,M]
1

h4
x

χ[1,N]×[2,M−1]
−2
h4

y

+χ[1,N]×[1,M−2]
−2
h4

y

χ[1,N]×[1,M−2]
1

h4
y

·u

For an example of how these conditions look at the boundaries, see Figure
4.3 for an example in x-direction only.

For the mixed derivatives, differentiation gives:

0 = ∂ui+1,j+1
F22 =

ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

8h2
xh

2
y

k=i+1,l=j+1
=

uk,l − uk−2,l − uk,l−2 + uk−2,l−2

8h2
xh

2
y

(4.25a)

with the scope of application [3, N]× [3, M],

0 = ∂ui−1,j+1
F22 = −ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

8h2
xh

2
y

k=i−1,l=j+1
= −uk+2,l − uk+2,l−2 − uk,l + uk,l−2

8h2
xh

2
y

(4.25b)

with the scope of application [1, N − 2]× [3, M],

0 = ∂ui+1,j−1
F22 = −ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

8h2
xh

2
y

k=i+1,l=j−1
= −uk,l+2 − uk,l − uk−2,l+2 + uk−2,l

8h2
xh

2
y

(4.25c)

with the scope of application [3, N]× [1, M − 2], and

0 = ∂ui−1,j−1
F22 =

ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

8h2
xh

2
y

k=i−1,l=j−1
=

uk+2,l+2 − uk+2,l − uk,l+2 + uk,l

8h2
xh

2
y

(4.25d)

with the scope of application [1, N − 2]× [1, M − 2].

50 CHAPTER 4. VARIATIONAL METHOD

1 2 3 4 5

.

.

.
1 -2 1

.

.

.

[1, N − 2] [1, N − 2] [1, N − 2]

. . .

(a) left border, i = 1

1 2 3 4 5

.

.

.
-2 5 -4 1

.

.

.

[2, N − 1]
[1, N − 2]
[2, N − 1]

[1, N − 2]
[2, N − 1]

[1, N − 2]

. . .

(b) left border, i = 2

1 2 3 4 5

.

.

.
1 -4 6 -4 1

.

.

.

[3, N]
[3, N]

[2, N − 1]

[1, N − 2]
[2, N − 1]

[3, N]

[1, N − 2]
[2, N − 1]

[1, N − 2]

. . .

(c) center, i = 3

. . .

N-4 N-3 N-2 N-1 N

.

.

.
1 -4 6 -4 1

.

.

.

[2, N − 1]
[1, N − 2]
[2, N − 1]

[1, N − 2]
[2, N − 1]

[1, N − 2]

(d) center, i = N − 2

. . .

N-4 N-3 N-2 N-1 N

.

.

.
1 -4 5 -2

.

.

.

[3, N]
[2, N − 1]

[3, N]
[2, N − 1]

[3, N]
[2, N − 1]

(e) right border, i = N − 1

. . .

N-4 N-3 N-2 N-1 N

.

.

.
1 -2 1

.

.

.

[3, N] [3, N] [3, N]

(f) right border, i = N

Figure 4.3: Illustration of the indicator function χ for the stencil Sxxxx. Each table
represents part of an image/flow field with differently selected center pixels (location i, in
gray). The x-range is numbered [1, N] (top rows). The bottom row indicates the x-ranges
of the active χs. (Their y-range is always [1,M] in this example.)

4.2. DISCRETIZATION AND MINIMIZATION 51

This yields the stencil:

∂xxyyu ≈ Sxxyy =

1

8h2
xh

2
y

χ[3,N]×[3,M] 0
−χ[3,N]×[3,M]

−χ[1,N−2]×[3,M]
0 χ[1,N−2]×[3,M]

0 0 0 0 0

−χ[3,N]×[3,M]

−χ[3,N]×[1,M−2]
0

χ[3,N]×[3,M]

+χ[1,N−2]×[3,M]

+χ[3,N]×[1,M−2]

+χ[1,N−2]×[1,M−2]

0
−χ[1,N−2]×[3,M]

−χ[1,N−2]×[1,M−2]

0 0 0 0 0

χ[3,N]×[1,M−2] 0
−χ[3,N]×[1,M−2]

−χ[1,N−2]×[1,M−2]
0 χ[1,N−2]×[1,M−2]

·u

(4.26)

In stencil notation, we therefore have the necessary condition for a mini-
mum

0
!
= J11i,j

ui,j + J13i,j
+ α (Sxx + Syy)i,j + β (Sxxxx + 2Sxxyy + Syyyy)i,j ,

(4.27)

for i ∈ [1, N], j ∈ [1, M]. The complete stencil for the smoothness term
(diffusion) is given in Figure 4.4.

As a matter of fact, this coincides perfectly with the Euler-Lagrange
equation

0 = J11u + J13 − α∆u + β∆2u , (4.28)

as our (Sxx+Syy) is exactly what one would obtain discretizing −∆u directly
using standard discretizations. ∆u is the trace of H(u) or the Laplacian of
u; ∆2, the square of the Laplacian, is also called the biharmonic operator
and discretized via Sxxxx + 2Sxxyy + Syyyy.

52 CHAPTER 4. VARIATIONAL METHOD

Minimization of Alternative Discretization of Smoothness Term II

We have previously shown how the calculation works, therefore we just show
the stencil for the alternative approximation of ∂xxyyu here:

∂xxyyu ≈ Sxxyy =

1

2h2
xh

2
y

0 0 0 0 0

0

χ[2,N]×[2,M]

+χ[2,N−1]×[2,M]

+χ[2,N]×[2,M−1]

+χ[2,N−1]×[2,M−1]

−χ[1,N−1]×[2,M]

−χ[2,N]×[2,M]

−2χ[2,N−1]×[2,M]

−χ[1,N−1]×[2,M−1]

−χ[2,N]×[2,M−1]

−2χ[2,N−1]×[2,M−1]

χ[1,N−1]×[2,M]

+χ[2,N−1]×[2,M]

+χ[1,N−1]×[2,M−1]

+χ[2,N−1]×[2,M−1]

0

0

−χ[2,N]×[1,M−1]

−χ[2,N]×[2,M]

−χ[2,N−1]×[2,M]

−χ[2,N−1]×[1,M−1]

−2χ[2,N]×[2,M−1]

−2χ[2,N−1]×[2,M−1]

χ[1,N−1]×[1,M−1]

+χ[2,N]×[1,M−1]

+2χ[2,N−1]×[1,M−1]

+χ[1,N−1]×[2,M]

+χ[2,N]×[2,M]

+2χ[2,N−1]×[2,M]

+2χ[1,N−1]×[2,M−1]

+2χ[2,N]×[2,M−1]

+4χ[2,N−1]×[2,M−1]

−χ[1,N−1]×[1,M−1]

−χ[2,N−1]×[1,M−1]

−χ[1,N−1]×[2,M]

−χ[2,N−1]×[2,M]

−2χ[1,N−1]×[2,M−1]

−2χ[2,N−1]×[2,M−1]

0

0

χ[2,N]×[1,M−1]

+χ[2,N−1]×[1,M−1]

+χ[2,N]×[2,M−1]

+χ[2,N−1]×[2,M−1]

−χ[1,N−1]×[1,M−1]

−χ[2,N]×[1,M−1]

−2χ[2,N−1]×[1,M−1]

−χ[1,N−1]×[2,M−1]

−χ[2,N]×[2,M−1]

−2χ[2,N−1]×[2,M−1]

χ[1,N−1]×[1,M−1]

+χ[2,N−1]×[1,M−1]

+χ[1,N−1]×[2,M−1]

+χ[2,N−1]×[2,M−1]

0

0 0 0 0 0

·u

(4.29)

4.3 Solving

With a 5×5 neighborhood (stencil), this leads to a system of equations with
25 equations and 25 unknowns, that is, a sparse matrix with 25 diagonals
which are however “grouped” into blocks of 5 diagonals. These diagonals
contain all the interaction with the corresponding neighboring pixels.

The elements of the matrix are now necessarily ordered in a linear fashion,
i.e. no longer indexed two-dimensionally with ui,j but as uo(i,j) via a function
o(i, j) = ((N − 1) · j) + i. Therefore, in each row of the system matrix one
can see the stencil applied. The diagonals that are far away from the main
diagonal in the system matrix contain the neighboring pixels from another
row (but the same column) of the signal/image, while the diagonals that are
adjacent to the center diagonal represent the neighbors from the current row
(but the other columns). An exemplary system matrix A clearly showing

4.3. SOLVING 53

horizontal and vertical interactions for a 4× 2 image looks like

c0 x+
0 0 0 y+

0 0 0 0
x−1 c1 x+

1 0 0 y+
1 0 0

0 x−2 c2 x+
2 0 0 y+

2 0
0 0 x−3 c3 0 0 0 y+

3

y−4 0 0 0 c4 x+
4 0 0

0 y−5 0 0 x−5 c5 x+
5 0

0 0 y−6 0 0 x−6 c6 x+
6

0 0 0 y−7 0 0 x−7 c7


︸ ︷︷ ︸

A



u0

u1

u2

u3

u4

u5

u6

u7


. (4.30)

In it we denote by ci the center weights for the corresponding stencil appli-
cation (centered at ui) and by x+

i , x−i , y+
i and y−i their right, left, lower and

upper neighbor weights, respectively. With the previously mentioned linear
ordering, the image would be encoded in a structure like

uo(0,0) = u0 uo(1,0) = u1 uo(2,0) = u2 uo(3,0) = u3

uo(0,1) = u4 uo(1,1) = u5 uo(2,1) = u6 uo(3,1) = u7
.

The stencil with its corresponding weights at element u3 (upper-right corner
of image) would thus look like

0 0 0
x−3 c3 0
0 y+

3 0
· u3 .

An exemplary structure of the system of equations Ax = b is


J11

J11

J11

J11

J11


︸ ︷︷ ︸

data term

−α


−2 1 1
1 −3 1 1

1 −2 1
1 1 −3 1

1 1 −2


︸ ︷︷ ︸

smoothness term 1

+β


17 −16 3 −4
−16 30 −16 3
3 −16 27 −16 3

3 −16 30 −16
−4 3 −16 17


︸ ︷︷ ︸

smoothness term 2


︸ ︷︷ ︸

system matrix A


u
u
u
u
u


︸︷︷︸

x

=


−J13

−J13

−J13

−J13

−J13


︸ ︷︷ ︸

b

.

(4.31)

In Section 2.1.2 we had introduced the SOR method for solving linear
systems of equations and previously in this chapter we have seen the warping
strategy. This is where both are used in the implementation.

54 CHAPTER 4. VARIATIONAL METHOD
i−

2
i−

1
i

i
+

1
i
+

2

j
−

2
β „

χ
[3

,N
]×

[3
,M

] (
1

4
h
2x

h
2y
) «

0

β “
χ

[1
,N

]×
[3

,M
] (

1h
4y
)

+

χ
[3

,N
]×

[3
,M

] (
−

1
4
h
2x

h
2y
)

+

χ
[1

,N
−

2
]×

[3
,M

] (
−

1
4
h
2x

h
2y
) ”

0
β „

χ
[1

,N
−

2
]×

[3
,M

] (
1

4
h
2x

h
2y
) «

j
−

1
0

0

α “
χ

[1
,N

]×
[2

,M
] (

1h
2y
) ”

+

β “
χ

[1
,N

]×
[3

,M
] (
−

2
h
4y

)
+

χ
[1

,N
]×

[2
,M

−
1
] (
−

2
h
4y

) ”
0

0

j

β “
χ

[3
,N

]×
[1

,M
] (

1h
4x
)

+

χ
[3

,N
]×

[3
,M

] (
−

1
4
h
2x

h
2y
)

+

χ
[3

,N
]×

[1
,M

−
2
] (

−
1

4
h
2x

h
2y
) ”

α “
χ

[2
,N

]×
[1

,M
] (

1h
2x
) ”

+

β “
χ

[3
,N

]×
[1

,M
] (
−

2
h
4x

)
+

χ
[2

,N
−

1
]×

[1
,M

] (
−

2
h
4x

) ”

α “
χ

[1
,N
−

1
]×

[1
,M

] (
−

1
h
2x

)
+

χ
[2

,N
]×

[1
,M

] (
−

1
h
2x

)
+

χ
[1

,N
]×

[1
,M

−
1
] (
−

1
h
2y

)
+

χ
[1

,N
]×

[2
,M

] (
−

1
h
2y

) ”
+

β “
χ

[3
,N

]×
[1

,M
] (

1h
4x
)

+

χ
[2

,N
−

1
]×

[1
,M

] (
4h
4x
)

+

χ
[1

,N
−

2
]×

[1
,M

] (
1h
4x
)

+

χ
[1

,N
]×

[3
,M

] (
1h
4y
)

+

χ
[1

,N
]×

[2
,M

−
1
] (

4h
4y
)

+

χ
[1

,N
]×

[1
,M

−
2
] (

1h
4y
)

+

χ
[3

,N
]×

[3
,M

] (
1

4
h
2x

h
2y
)

+

χ
[1

,N
−

2
]×

[1
,M

−
2
] (

1
4
h
2x

h
2y
)+

χ
[3

,N
]×

[1
,M

−
2
] (

1
4
h
2x

h
2y
)

+

χ
[1

,N
−

2
]×

[3
,M

] (
1

4
h
2x

h
2y
) ”

α “
χ

[1
,N
−

1
]×

[1
,M

] (
1h
2x
) ”

+

β “
χ

[1
,N
−

2
]×

[3
,M

] (
−

2
h
4x

)
+

χ
[2

,N
−

1
]×

[1
,M

] (
−

2
h
4x

) ”
β “

χ
[1

,N
−

2
]×

[1
,M

] (
1h
4x
)

+

χ
[1

,N
−

2
]×

[1
,M

−
2
] (

−
1

4
h
2x

h
2y
)+

χ
[1

,N
−

2
]×

[3
,M

] (
−

1
4
h
2x

h
2y
) ”

j
+

1
0

0

α “
χ

[1
,N

]×
[1

,M
−

1
] (

1h
2y
) ”

+

β “
χ

[1
,N

]×
[2

,M
−

1
] (
−

2
h
4y

)
+

χ
[1

,N
]×

[1
,M

−
2
] (
−

2
h
4y

) ”
0

0

j
+

2
β „

χ
[3

,N
]×

[1
,M

−
2
] (

1
4
h
2x

h
2y
) «

0

β “
χ

[1
,N

]×
[1

,M
−

2
] (

1h
4y
)

+

χ
[1

,N
−

2
]×

[1
,M

−
2
] (

−
1

4
h
2x

h
2y
)+

χ
[3

,N
]×

[1
,M

−
2
] (

−
1

4
h
2x

h
2y
) ”

0
β „

χ
[1

,N
−

2
]×

[1
,M

−
2
] (

1
4
h
2x

h
2y
) «

·u

F
ig

u
r
e

4
.4

:
Stencil

for
the

discretization
of

the
fourth-order

filter
in

(4.28)
w

ith
com

plete
boundary

conditions.

Chapter 5

Experimental Results

In this chapter we present quantitative and qualitative results of the local
method from Chapter 3, the standard Horn/Schunck global method, and the
variational method from Chapter 4 and its two discretizations.

5.1 Error Measures

For local methods there are several popular methods of indicating some kind
of mean computed disparity error. First, there are the average absolute (AA)
disparity error and the root mean squared (RMS) error, both in disparity
units between the ground truth map dT and the computed disparity map dC :

eAA(dC , dT) =
1

|Ω2|
∑

(x,y)∈Ω2

∣∣dC(x, y)− dT (x, y)
∣∣ , (5.1a)

eRMS(dC , dT) =

√
1

|Ω2|
∑

(x,y)∈Ω2

(
dC(x, y)− dT (x, y)

)2
, (5.1b)

where Ω2 denotes the two-dimensional image domain and |Ω2| consequently
the number of pixels in the image.

The RMS error by design penalizes large differences between the real and
the estimated data more than smaller ones, which are even attenuated (if they
are smaller than 1). One can argue that this represents a better subjective
error measure, as very small errors tend to go unnoticed by humans. The
final display of the disparity map as an image forcibly happens with integer
precision, therefore one can further argue that such small nuances do not
matter anyway, which is why we stick to the AA disparity error (AADE).

For optic flow techniques the error measure of choice is the average angu-
lar error (AAE) between the true and the computed displacement vector field
[BFB94]. It is an error expressed as angle because optic flow is a generaliza-
tion of the stereo correspondence problem, in which correspondences can be
arbitrary; in stereo they are not, remember the epipolar constraint (Section

55

56 CHAPTER 5. EXPERIMENTAL RESULTS

2.2). The average difference of the angle between the vectors in the real and
in the computed vector field gives the AAE and is expressed in degrees.

In our case however, we know beforehand that we will obtain horizontal
flow fields only, therefore we can encode the length of the corresponding
vector u(x, y, t) directly as a gray scale image, and use the AA or RMS
error instead (after properly scaling). This also has the advantage that our
measurements for local and global method are directly comparable.

Another popular error measure is the number of bad matching pixels
(BP) [SZ00]

eBP(dC , dT) =
100

|Ω2|
∑

(x,y)∈Ω2

(∣∣dC(x, y)− dT (x, y)
∣∣ > δd

)
. (5.2)

The part inside the sum is read as a comparison and as such has a boolean
result: if the operator > returns “false” we interpret this as the integer 0
and if it returns “true” we interpret it as the integer value 1. We sum up
these results and finally display them as the percentage of pixels that are off
by more than a certain threshold over the entire region under consideration.
For the threshold, we use δd = 1.0.

It is important to note that, as indicated above, we do not simply compare
the result images that you see in this section to their ground truth images,
but we compare (floating point) disparities, as many rounding errors and
imprecisions would otherwise be introduced. We use the ground truth images
and their known normalization factor used to produce them in order to obtain
a floating point disparity. We then compare this value directly to the floating
point disparity resulting from our computations.

Additionally we usually do not consider a certain region at the border.
Which region that is exactly for the individual dataset and method is men-
tioned in its context. In the ground truth displayed, such regions are com-
pletely black.

5.2 Parameters and Implementation Details

In this section, we show the parameters used for the upcoming experiments
and bring up some details about the implementation that are worth men-
tioning. Some basic data about the scenes used for evaluation can later be
found in Tables 5.1 and 5.2 for the local and global method, respectively.

5.2.1 Local Method

Window size

The choice of the window size involves a trade-off between a noisy disparity
map and blurring of depth boundaries, which occurs when the support region

5.2. PARAMETERS AND IMPLEMENTATION DETAILS 57

(window) spans depth/object boundaries. On the other hand, detailed fea-
tures in a scene are usually only recognized using a small window. A perfect
example for this is the lamp stem in the Tsukuba sequence.

Candidate matches and sorting

It is important to understand that starting from the initial plain SSD fit com-
putation, for each pixel in the left image, there are several possible matching
locations (candidate matches) in the right image that are kept in memory.
This is done because region matching like SSD is inherently error-prone: the
best fit value need not necessarily be the right match. It is however assumed
that one of the best fits is indeed the correct correspondence (at least it
is assumed to be in the vicinity of the correct match), which the deformed
window SSD will then detect at a later step.

Storing the top n matches for one pixel is not as trivial as it might seem
because we have the additional constraint that two good matches must be a
certain number of disparity units apart (in order to avoid local minima). In
that case, simply sorting the values by best fit, i.e. checking the epipolar line
pixel by pixel and checking whether the new fit is better than the previous
fit will fail. Consider the following matches along the epipolar line and let
us assume that the next (best) fit stored must be at least two positions away
from the current best fit:

disparity 1 2 3 4 5 6
fit 5 4 3 2 4 5

We start with the first cell containing the value 5. As it is the first value
seen, it automatically is the best value seen so far (green color). The next
cell contains the value 4: it is better than 5 (here lower is better, like in
SSD), but it is directly adjacent to 5, therefore it is ignored (red color). In
the next cell, the value 3 is stored as another best fit etc. Finally, the array
storing the top three fits would look like

5 3 X

where X denotes an empty cell. Obviously, we have not obtained the actual
best fit, which would have been 2 at disparity four (red background). To
tackle this problem algorithmically, one has to store fit-disparity tuples as
follows:

1. compute all SSD/NXC fit values for one image pixel (up to a certain
maximum disparity), remember (f, d)-tuples where f is the fit value
and d the associated disparity,

2. sort the tuples by fit value from best to worst (that is, increasing for
SSD / decreasing for NXC); if two tuples have the same fit value, we
select the “better” one as the one with the lower disparity,

58 CHAPTER 5. EXPERIMENTAL RESULTS

3. remember the final best n fits:

(a) add the best tuple to the final array of candidate matches,

(b) check the next best unseen tuple, and

. add it to the final array, if it passes the check that the dispar-
ity is at least δ pixels apart from each currently stored final
tuples, or

. ignore it, if this is not the case.

(c) Repeat the last step until we have found n tuples or none are left.

(We choose n = 3 and δ = 2, that is |x2 − x1| ≥ δ).

Considering our previous example, the resulting array of best fit-disparity
tuples would be

slot 1 2 3

disparity 4 2 6
fit 2 4 5

The value 4 at disparity five is not added because it is too close to the best
value at disparity four. The value 5 at disparity one is not added because it
is too close to the value 4 at disparity two.

Note that in our implementation the maximum number of fits kept is
set to three1. If there are no more free slots to accommodate new values,
we overwrite existing values by better ones, but evidently only if the new
value is better than the worst one currently stored (the worst value will be
replaced).

Restriction of search space

Not only do we remember several matches, we also try to obtain dense and
more accurate disparity maps by just accepting the lowest fit value(s) within
the manually defined maximum disparity as given by a human observer (we
do not search the entire epipolar line).

Additionally, in an orthoparallel setup, it suffices to search from right to
left in the right image, starting at the x coordinate of the original point in the
left image. This becomes evident because in the right image, the valid match
must be on the left-hand side of the original coordinate, as all objects have
moved to the left in the right image, compared to the left image. (Obviously,
we must not confound left and right images for this to work, as in the general
case we do not talk about “left” or “right” images, but about image 1 and
2.)

1otherwise the computational burden for all the subsequent steps would be too high

5.2. PARAMETERS AND IMPLEMENTATION DETAILS 59

Deformed Window SSD (dwSSD) and Normalized Cross Correla-
tion (NXC)

Although, as the name indicates, inside the deformed window an SSD is
computed, one can however choose the value with which to initialize this
minimization problem. It might be easier for the dwSSD to find the actual
minimum if the initialization is more correct. That is why we use NXC with
dwSSD as an experiment — this is not a mistake.

5.2.2 Global Method

The second order regularization term added to the Horn/Schunck method
was chosen with the idea in mind to have something similar to slanted surfaces
detection in the local method that we presented previously.

Model and Numerical Parameters

α indicates the regularization parameter for the first order and β for the
higher order (HO) smoothness term, exactly as they are used in the theoret-
ical section.

The warping parameter η indicates how much the resolution is changed
from a fine to a coarser level, i.e. with η = 0.5 one would have half the reso-
lution of the current level at the next level (see Figure 5.1). The convergence
factor ω for the SOR method remains fixed at 1.950.

(a) coarse ... (b) ... to ... (c) ... fine

Figure 5.1: Coarse and fine images for η = 0.5.

Additionally, if a correspondence is found outside of the image (since the
image size is known), the software ignores the data term and just uses the
smoothness term (i.e. fills in from the neighborhood). 200 iterations are
enough in our cases for the filling-in to produce qualitatively good results.

60 CHAPTER 5. EXPERIMENTAL RESULTS

Scaling of HO Smoothness Regularization Parameter

Using higher-order smoothness terms together with the warping strategy re-
quires careful adjustment of the regularization parameter (here β) at the
individual warping levels. While the first order smoothness assumption di-
vides by terms of the order of h2, the second order smoothness assumption
divides by terms of the order of h4, i.e. compared to each other the latter
factors become smaller by an order of two compared to the former ones from
level to level. In order to counteract that effect we scale the regularization
parameter β by 1

η2 at each level (making it larger, as 0 < η < 1).

Corridor Tsukuba
window size (9× 9) (21× 21) (9× 9) (21× 21)

Images resolution 256× 256 384× 288
ground truth resolution 256× 256 348× 252
disp. map resolution 248× 248 236× 236 376× 280 364× 268

considered region 236× 236 236× 236 348× 252 348× 252

of pixels (all) 55696 87696
of pixels (non-occl.) 54768 (98.3%) 85438 (97.4%)

disp. map scale factor 21.25 16

Table 5.1: Parameters of Local Method

Corridor Tsukuba

Images resolution 256× 256 384× 288
ground truth resolution 256× 256 348× 252
disp. map resolution 256× 256 384× 288

considered region 236× 236 348× 252

SOR iterations 200
warping levels 10

η 0.8

disp. map scale factor 21.25 16

Table 5.2: Parameters of Global Method

5.3 Evaluation

The scenes we use are the University of Bonn Corridor Sequence (Figure
5.2), a synthetic sequence with lots of slanted surfaces, and two frames of

5.3. EVALUATION 61

the University of Tsukuba stereo sequence (Figure 5.3), containing complex
objects at different depths generating several occlusions, as well as poorly-
textured regions in the background.

To be able to provide fair results between the local and global method,
it is especially necessary to compare the very same regions of the resulting
disparity maps to its ground truth. For the local method, we have the prob-
lem with the Corridor Sequence, that using a larger window size decreases
the size of the resulting disparity map. We thus compare for both local and
global methods only the regions where both methods always provide results.
For Tsukuba, there is no such problem, as the available ground truth is the
limiting factor here. We have adequately mentioned this in Tables 5.1 and
5.2 as the “considered region”.

(a) left camera (b) right camera (c) ground truth

Figure 5.2: University of Bonn Corridor Sequence (256× 256 px, disparity range 11).

(a) left camera (b) right camera (c) ground truth

Figure 5.3: University of Tsukuba stereo sequence (384× 288 px, disparity range 14).

Note that we have not applied any pre-smoothing to the images in either
method (σ = 0). “px” stands for the unit pixels.

62 CHAPTER 5. EXPERIMENTAL RESULTS

5.3.1 Local Method

We will use several abbreviations for the individual elements in the local
method, we now summarize them:

. SSD/NXC: sum of squared differences/normalized cross correlation:
region-based matching metric; first seen in Section 3.1,

. IWS: initial window size: window size for the initial region matching
method (SSD/NXC),

. dwSSD: deformed window SSD: region based matching with deformed
window (this window size is always 9× 9, except for one experiment);
first seen in Section 3.2,

. GSID: geometric support space iterative diffusion; first seen in Section
3.4,

. GSR: geometric support region: 3-D (x,y,d) support region (neighbor-
hood) for GSID; first seen in Section 3.4.

The computation of the Corridor Sequence (256 × 256 pixels) takes ap-
proximately 35 minutes on an AMD Athlon64 3700+ CPU (2200 MHz) with
1 MB L2-Cache. Most of the time is spent on the minimization problem for
dwSSD (248× 248 pixels of information for a 9× 9 SSD window size and a
9× 9 window size for dwSSD), with about 0.01 second per fit and three fits
per pixel, dwSSD takes about 30 minutes. The remaining five minutes are
spent on the diffusion in the geometric support space (GSID) with geometric
support region (GSR) 5× 5× 3. Increasing the GSR to 21× 21× 7 increases
the running time for this part of the computation from five to at least twenty
minutes. This is expected, because in the worst case we have about 40 times
more points to consider.

As one can see, for the Corridor Sequence, SSD performs slightly better
than NXC, after only a few iterations, but only for the initialization with a
large IWS (Figure 5.12). This agrees with the intuition that for scenes with
many (and/or large) homogeneous areas, larger windows perform better than
smaller ones.

For the Tsukuba sequence, one would first think using a smaller IWS was
a more correct approach in order to detect the minute details in the scene.
Furthermore, there is varying illumination in the scene, so NXC should do
better. This reasoning indeed seems to be correct: the best result is obtained
using NXC with a 9× 9 window for initial region matching.

For both scenes, a large GSR of 21 × 21 × 7 proves useful, in order to
aggregate the most information from the neighborhood.

To get an idea, Figure 5.4 shows what disparity derivatives have been
determined for the Corridor Sequence. Green, red, yellow and blue areas in-
dicate negative and positive ∂xd, and negative and positive ∂yd, respectively.

5.3. EVALUATION 63

The results agree with our intuitions from Section 3.3, especially Table 3.2,
and we can also see that discontinuities and the checkerboard floor pattern
pose problems here.

(a) ∂xd (b) ∂yd

Figure 5.4: Corridor Sequence First Order Disparities

5.3.2 Global Method

We can see that using the HO (higher horder) regularizer performs especially
well with the Corridor sequence, since it contains many slanted surfaces. On
the other hand, it also seems to introduce some visually unappealing artifacts
at the end of the corridor in the homogeneous region. Looking at the error
measures however proves its superiority.

The Tsukuba sequence also does well with the HO regularizer, however
since slanted surfaces are less present here, we must conclude that simply the
use of higher order regularization allows for a better disparity map estimation.
The best result was obtained using a little of the first order regularizer too,
which we determined empirically.

As far as the two discretizations for the mixed term are concerned, one
can already conclude that the standard central differences obtained by taking
the square of the average of backward/forward differences (4.19) dominates
taking the average of the square of backward/forward differences (4.21). This
could be due to the first one (Stencil 4.26) considering pixels further away
from the center than the second one (Stencil 4.29), and therefore being more
robust.

5.3.3 And the Winner is ...

In the local method, it is sometimes unclear when to stop the geometric
support space iterative diffusion (GSID), as one can see in the case of 21×21

64 CHAPTER 5. EXPERIMENTAL RESULTS

SSD with 21×21×7 GSR for the corridor sequence. It reaches the unbeaten
value2 of 0.313 AA disparity error units (for the non-occluded regions) and
starts to slightly worsen from there. So, if one were to stop when the results
are getting worse again, one would choose this method. However, the real
winner is the very similar 21×21 NXC with 21×21×7 GSR, which continues
to work towards always better values, even after the 24th iteration (see Table
5.3), with 0.319 AADE units. The best value obtained for the corridor with
the global method is the very close 0.331 AADE units.

As far as the Tsukuba sequence is concerned, the global method prevails
with a best result of 0.539 AADE units (non-occluded). The best result of
the local method in this case is the 9×9 SSD with 21×21×7 GSR with 0.597
AADE units. The best BP error measure for Tsukuba is however obtained
with 9 × 9 NXC with 5 × 5 × 3 GSR with 11.909% (see Table 5.4), which
is a sign that the latter method produces more small errors, and the former
larger ones.

The intuition that, for scenes with lots of detail (like Tsukuba), a smaller
IWS is better, is confirmed (up to 0.25 AADE and 0.8 BP units better than
large window for the same method and same GSR); vice versa, for scenes
with less detail (like the Corridor), using a larger IWS runs in no danger of
blurring the non-existing details/discontinuities and additionally produces
more exact results (ca. 0.1-1 AADE and 1-5 BP units better than smaller
window for the same method and same GSR).

One can also conclude for the local method that a larger GSR is always
better, as it allows to aggregate more information from the neighborhood. It
is however not wise to use large windows for everything, including dwSSD, as
the experiment with 21× 21 NXC with 21× 21× 7 GSR and 21× 21 dwSSD
for Tsukuba has shown; too many details are blurred and this experiment
has the worst error statistics for this scene.

We will now show results as pictures with short descriptions, followed by
charts and tables with the quantitative data.

2as far as our experiments are concerned

5.3. EVALUATION 65

(a) left camera (b) traditional SSD (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.5: Corridor disparity maps with 9× 9 SSD window before and after dwSSD.

Figure 5.5 shows data for 9×9 SSD. In the second row, we show the three
best fits obtained via traditional SSD, that is used to initialize the dwSSD,
whose results are displayed in the third row.

Obviously, e.g. Figure 5.5(d) is the same as Figure 5.5(b) as the best
match is always the one returned when we choose to have one fit per pixel
only.

In this and all following experiments one can see that interpolated floating
point disparities clean up the results a lot. The pictures on the left and right
walls as well as discontinuities can pose matching problems, here at least for
the second and third best fits. Geometric support space diffusion (GSID)
will clean this up for the final result.

66 CHAPTER 5. EXPERIMENTAL RESULTS

(a) left camera (b) traditional SSD (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.6: Corridor disparity maps with 21× 21 SSD window before and after dwSSD.

Figure 5.6 shows data obtained using 21× 21 SSD. In the second row, we
show the three best fits obtained via traditional SSD, that is used to initialize
the dwSSD (always a 9× 9 window), whose results are displayed in the third
row.

In this experiment, as in the previous and following experiments with
local region matching, one can see that the homogeneous area at the back of
the corridor poses problems to local methods. In the worst case, a seemingly
valid disparity could be the distance in pixels from one side of the door at
the end of the corridor to the other, which however we avoid by selecting the
lowest disparity for the same fit value.

5.3. EVALUATION 67

(a) left camera (b) traditional NXC (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.7: Corridor disparity maps with 9× 9 NXC window before and after dwSSD.

As a further experiment, Figure 5.7 shows data obtained using 9 × 9
normalized cross correlation. In the second row, we show the three best
fits obtained via NXC, that is used to initialize the dwSSD (always a 9 × 9
window), whose results are shown in the third row.

One can see that for this scene it provides a seemingly worse result than
SSD, especially at the right wall close to the camera (except for the light
switch, which is at the vertical center of that wall). This introduces a lot of
noise in that location also for the interpolated disparity, as these seemingly
random matches are too far from the global minimum for dwSSD.

68 CHAPTER 5. EXPERIMENTAL RESULTS

(a) left camera (b) traditional NXC (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.8: Corridor disparity maps with 21×21 NXC window before and after dwSSD.

In Figure 5.8, as with 21× 21 SSD, we can see that a large window helps
somewhat in scenes with lots of homogeneous areas and no small details. It
also helps alleviate the problem with the checkerboard pattern on the floor,
as it blurs the discontinuities. However, in another scene, where those could
have actually been different surfaces, it would have made things worse.

Figure 5.9 shows the finally obtained disparity maps (after GSID) with
all methods and all window sizes that we have tried. Figures 5.10 and 5.11
show how GSID proceeds for different initializations (only SSD initialization
is shown). As most improvements happen during the first few iterations, not
many more changes are visible in those figures, however one can see the floor
better filled-in using the larger GSID window.

5.3. EVALUATION 69

(a) ground
truth

— 5× 5× 3 Geometric Support Region —

(b) 9x9 SSD (c) 21x21 SSD

(d) 9x9 NXC (e) 21x21 NXC

— 21× 21× 7 Geometric Support Region —

(f) 9x9 SSD (g) 21x21 SSD

(h) 9x9 NXC (i) 21x21 NXC

Figure 5.9: Corridor final disparity maps after 8 iterations with different initializations
and GS window sizes.

70 CHAPTER 5. EXPERIMENTAL RESULTS

(a) initialization (b) iteration 3

(c) iteration 7 (d) iteration 11

(e) iteration 15 (f) iteration 19

(g) iteration 23 (h) ground truth

Figure 5.10: Corridor sequence for 9 × 9 SSD with 5 × 5 × 3 GS after the indicated
iterations.

5.3. EVALUATION 71

(a) initialization (b) iteration 3

(c) iteration 7 (d) iteration 11

(e) iteration 15 (f) iteration 19

(g) iteration 23 (h) ground truth

Figure 5.11: Corridor sequence for 21× 21 SSD with 21× 21× 7 GS after the indicated
iterations.

72 CHAPTER 5. EXPERIMENTAL RESULTS

(a) window size 9× 9

(b) window size 21× 21

Figure 5.12: Corridor GSID error statistics. First column: RMS disparity error (dis-
parity units) Second column: Bad matching pixels (percent)

As most improvements happen during the first few iterations in Figures
5.10 and 5.11, not many more changes are visible in those figures3, however
one can see the floor better filled-in because of the previously mentioned
advantage of a larger SSD window in this case.

Finally, Figure 5.12 shows the RMS error for different initializations and
support regions as a chart. Iteration −1 is the value for the traditional
method (integer disparity via SSD or NXC) — as expected it is very bad
(in the order of 100 RMS disparity units), that is why we don’t scale the
charts to show it, but we focus on the relevant measurements. Obviously,
the larger GSID window always provides better results, as it aggregates more
information from a larger neighborhood.

Table 5.3 later in this chapter shows exact AA/BP errors for both all and
non-occluded regions only.

3using our custom diffusion method presented in Appendix A

5.3. EVALUATION 73

(a) left camera (b) traditional SSD (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.13: Tsukuba disparity maps with 9× 9 SSD window before and after dwSSD.

Figure 5.13 shows data for 9 × 9 SSD. In the second row, we show the
three best fits obtained via traditional SSD, that is used to initialize the
dwSSD, whose results are displayed in the third row.

In this and the following experiments one can see that the background
of the Tsukuba scene is particularly challenging due to its homogeniety and
repeating patterns, especially in the upper right corner. It is however inter-
esting to note the almost perfect detection of the camera in the background
which often even escapes human observers as some parts of it almost blend
in completely with the background.

The problematic region at the left of the camera can however be solved
by looking at the other best fits, which confirms that most actual correspon-
dences indeed lie near to the very best fit obtained. We show this in more
detail in one of the upcoming figures.

74 CHAPTER 5. EXPERIMENTAL RESULTS

(a) left camera (b) traditional SSD (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.14: Tsukuba disparity maps with 21×21 SSD window before and after dwSSD.

Figure 5.14 shows data obtained using 21×21 SSD. In the second row, we
show the three best fits obtained via traditional SSD, that is used to initialize
the dwSSD (always a 9× 9 window), whose results are displayed in the third
row.

As stated previously, using a large window size in a scene with lots of
detail blurs edges too much. Here we can see this e.g. at the top of the
head and also at the lamp stem, which is almost completely lost. However
the background is reconstructed well. The Tsukuba sequence would proba-
bly yield a better reconstruction not with deformed windows but adaptive
window sizes.

5.3. EVALUATION 75

(a) left camera (b) traditional NXC (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.15: Tsukuba disparity maps with 9× 9 NXC window before and after dwSSD.

Figure 5.15 shows data obtained using 9×9 normalized cross correlation.
In the second row, we show the three best fits obtained via NXC, that is used
to initialize the dwSSD (always a 9× 9 window), whose results are shown in
the third row.

We have highlighted a region, where one can see that intelligently com-
bining information from the three different disparity maps (three best fits),
might yield a much better final result. GSID can be considered as a filling-in
method for this local method. Remember that disparities are never changed
once they have been initially computed — we finally merely select one of
several fits that we obtained in the beginning.

76 CHAPTER 5. EXPERIMENTAL RESULTS

(a) left camera (b) traditional NXC (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.16: Tsukuba disparity maps with 21×21 NXC window before and after dwSSD.

Figure 5.16 shows data obtained using 21× 21 NXC. In the second row,
we show the three best fits obtained, that are used to initialize the dwSSD
(a 9× 9 window), whose results are displayed in the third row.

For this scene and this window size, NXC seems to perform more or less
equally to SSD.

5.3. EVALUATION 77

(a) left camera (b) traditional NXC (c) ground truth

(d) best integer fit (e) 2nd best integer fit (f) 3rd best integer fit

(g) best float fit (h) 2nd best float fit (i) 3rd best float fit

Figure 5.17: Tsukuba with 21× 21 NXC and dwSSD window before and after dwSSD.

As an extra experiment, we have included for the NXC region matching
with window size 21 × 21 an increased window for dwSSD of 21 × 21 (in
all other cases it was always kept at 9 × 9) for the Tsukuba sequence. The
result is depicted in Figure 5.17 and it is also mentioned as a fifth case in the
corresponding error statistics.

As already mentioned in Section 5.3.3, using a large dwSSD window (in
addition to the already large NXC window), simply blurs edges too much for
a good reconstruction, especially in this scene containing lots of details.

Figure 5.18 shows the finally obtained disparity maps with all methods
and all window sizes that we have tried. Figures 5.19 and 5.20 show how the
geometric support space diffusion (GSID) evolves for different initializations
(only NXC initialization is shown). Note how the filling-in is faster for an
initialization with data obtained by using a large GSID window (Figure 5.20):
the gap in the head closes more quickly than in Figure 5.19.

78 CHAPTER 5. EXPERIMENTAL RESULTS

(a) ground truth

— 5× 5× 3 Geometric Support Region —

(b) 9x9 SSD (c) 21x21 SSD

(d) 9x9 NXC (e) 21x21 NXC

— 21× 21× 7 Geometric Support Region —

(f) 9x9 SSD (g) 21x21 SSD

(h) 9x9 NXC (i) 21x21 NXC (j) 21x21 NXC+dwSSD

Figure 5.18: Tsukuba final disparity maps after 8 iterations with different initializations
and GS window sizes.

5.3. EVALUATION 79

(a) initialization (b) iteration 1

(c) iteration 2 (d) iteration 3

(e) iteration 4 (f) iteration 5

(g) iteration 6 (h) iteration 7

Figure 5.19: Tsukuba sequence for 9 × 9 NXC with 5 × 5 × 3 GS after the indicated
iterations.

80 CHAPTER 5. EXPERIMENTAL RESULTS

(a) initialization (b) iteration 1

(c) iteration 2 (d) iteration 3

(e) iteration 4 (f) iteration 5

(g) iteration 6 (h) iteration 7

Figure 5.20: Tsukuba sequence for 21× 21 NXC with 21× 21× 7 GS after the indicated
iterations.

5.3. EVALUATION 81

(a) window size 9× 9

(b) window size 21× 21

Figure 5.21: Tsukuba GSID error statistics. First column: RMS disparity error (dis-
parity units) Second column: Bad matching pixels (percent)

Finally, Figure 5.21 shows the RMS error for different initializations and
support regions as a chart. Iteration −1 is the value for the traditional
method (integer disparity via SSD or NXC). For more info on the diffusion
method see Appendix A.

As before, the biggest improvements in the error measure happen during
the first few iterations of our diffusion method. Note that for this scene
the window size does not seem to matter as much as for the Corridor, as
the final result after GSID is more or less the same disparity error. This
is probably due to the fact that none of our initializations are really good.
(Again, we would probably need at least adaptive window sizes for the local
region matching.)

Table 5.4 later in this chapter shows exact AA/BP errors for both all and
non-occluded regions only.

82 CHAPTER 5. EXPERIMENTAL RESULTS

(a) ground truth (b) α = 1000, β = 0

(c) α = 0, β = 500 – Disc. 1 (d) α = 100, β = 500 – Disc. 2

Figure 5.22: Corridor disparity map estimation using global method. Model parameters
as indicated. Numerical parameters as given in the text.

Figures 5.22 and 5.23 show results for both scenes with the global method
with both Horn/Schunck and HO regularizers. Disc. 1 and 2 refer to the
discretization for the HO mixed terms (4.19) and (4.21), respectively.

Strangely, using HO regularization looks worse than only Horn/Schunck
for the Corridor dataset (especially the floor), however the error measure
clearly shows that it improves results.

Note how the HO regularizer with discretization #1 allows for a more cor-
rect separation of the head and the lamp in the Tsukuba dataset. Discretiza-
tion #2 seems inferior, as it produces artifacts at the boundaries (especially
the top) with both scenes.

5.3. EVALUATION 83

(a) ground truth (b) α = 500, β = 0

(c) α = 50, β = 500 – Disc. 1 (d) α = 50, β = 500 – Disc. 2

Figure 5.23: Tsukuba disparity map estimation using global method. Model parameters
as indicated. Numerical parameters as given in the text.

Finally, Figure 5.24 shows the best results side-by-side. Although the
local method for the Corridor seems to produce less smooth results than the
global method, it nevertheless appears that certain areas are reconstructed
more correctly. This could be due to the fact that slanted surfaces are directly
integrated into the data term of our local method, whereas in the global
method only smoothness is higher-order. For Tsukuba, it is obvious that the
global method prevails because the background is filled in more correctly.

Tables 5.3 and 5.4 show the computed AA disparity and BP errors for
the Corridor and Tsukuba scene, respectively. Considering that the Tsukuba
dataset consists of about 1.57 times more pixels than the Corridor, it has
nevertheless about 0.616 − (0.331 · 1.57) = 0.096 ≈ 0.1 AADE units worse
error statistics for all pixels, and 0.539 − (0.313 · 1.57) = 0.049 in the non-
occluded case (comparing the best results). This confirms that occlusions
pose a great deal of problems and that the Tsukuba scene can be considered
a rather demanding scene for stereo algorithms.

In those tables, bestint denotes the best integer fit (the initialization for
dwSSD) and bestfloat the best fit (in floating point precision) produced by
dwSSD.

84 CHAPTER 5. EXPERIMENTAL RESULTS

(a) Corridor Ground Truth

(b) Corridor Local — Winner (c) Corridor Global

(d) Tsukuba Ground Truth

(e) Tsukuba Local (f) Tsukuba Global — Winner

Figure 5.24: Local/Global Lineup — Best Results

5.3. EVALUATION 85

L
o
c
a
l
M

e
th

o
d

—
S
S
D

(9
×

9
)

L
o
c
a
l
M

e
th

o
d

—
N

X
C

(9
×

9
)

G
S
(5×

5×
3
)

G
S
(2

1×
2
1×

7
)

G
S
(5×

5×
3
)

G
S
(2

1×
2
1×

7
)

A
A

B
P

A
A

B
P

A
A

B
P

A
A

B
P

ite
ra

tio
n

(t)
a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

be
stin

t
9
5
.2

3
4

9
4
.4

7
6

1
0
0
.0

0
0

1
0
0
.0

0
0

9
5
.2

3
4

9
4
.4

7
6

1
0
0
.0

0
0

1
0
0
.0

0
0

8
8
.9

7
8

8
8
.1

1
6

1
0
0
.0

0
0

1
0
0
.0

0
0

8
8
.9

7
8

8
8
.1

1
6

1
0
0
.0

0
0

1
0
0
.0

0
0

be
stfl

o
a
t

0
.6

6
6

0
.6

5
2

1
7
.1

3
4

1
6
.3

3
6

0
.6

6
6

0
.6

5
2

1
7
.1

3
4

1
6
.3

3
6

0
.7

3
7

0
.7

2
5

1
9
.3

6
4

1
8
.6

1
5

0
.7

3
7

0
.7

2
5

1
9
.3

6
4

1
8
.6

1
5

t=
0

0
.9

1
8

0
.9

0
8

2
4
.7

4
0

2
4
.0

5
1

0
.9

1
8

0
.9

0
8

2
4
.7

4
0

2
4
.0

5
1

0
.9

0
9

0
.8

9
9

2
5
.1

1
0

2
4
.4

4
3

0
.9

0
9

0
.8

9
9

2
5
.1

1
0

2
4
.4

4
3

1
0
.5

4
9

0
.5

3
3

1
5
.4

5
7

1
4
.6

2
9

0
.4

8
4

0
.4

6
8

1
4
.3

6
5

1
3
.5

3
2

0
.5

7
1

0
.5

5
6

1
6
.8

8
3

1
6
.0

8
1

0
.5

1
5

0
.5

0
0

1
5
.7

7
1

1
4
.9

7
2

2
0
.5

2
0

0
.5

0
4

1
5
.2

7
4

1
4
.4

4
6

0
.4

5
3

0
.4

3
6

1
3
.4

1
4

1
2
.5

5
8

0
.5

3
4

0
.5

1
8

1
6
.4

8
6

1
5
.6

7
7

0
.4

7
1

0
.4

5
5

1
4
.4

8
2

1
3
.6

5
0

3
0
.5

0
2

0
.4

8
5

1
5
.0

5
5

1
4
.2

2
4

0
.4

3
8

0
.4

2
1

1
3
.3

8
7

1
2
.5

3
3

0
.5

2
4

0
.5

0
8

1
6
.3

3
9

1
5
.5

2
9

0
.4

5
3

0
.4

3
6

1
4
.3

3
5

1
3
.4

9
9

4
0
.4

8
5

0
.4

6
9

1
5
.0

9
1

1
4
.2

6
0

0
.4

2
4

0
.4

0
7

1
3
.2

3
3

1
2
.3

7
6

0
.5

0
3

0
.4

8
6

1
6
.2

6
0

1
5
.4

5
1

0
.4

4
1

0
.4

2
4

1
4
.2

5
4

1
3
.4

1
7

5
0
.4

7
2

0
.4

5
5

1
5
.1

5
2

1
4
.3

2
2

0
.4

1
0

0
.3

9
2

1
2
.9

9
7

1
2
.1

3
7

0
.4

8
4

0
.4

6
8

1
6
.1

7
9

1
5
.3

6
8

0
.4

3
4

0
.4

1
7

1
4
.2

3
1

1
3
.3

9
3

6
0
.4

5
6

0
.4

3
8

1
5
.1

5
0

1
4
.3

2
0

0
.3

9
9

0
.3

8
1

1
2
.8

3
8

1
1
.9

7
4

0
.4

6
0

0
.4

4
3

1
6
.1

0
0

1
5
.2

8
8

0
.4

2
8

0
.4

1
0

1
4
.2

0
7

1
3
.3

6
9

7
0
.4

4
8

0
.4

3
1

1
4
.9

9
9

1
4
.1

6
7

0
.3

9
4

0
.3

7
6

1
2
.7

6
6

1
1
.9

0
1

0
.4

5
3

0
.4

3
6

1
6
.0

3
5

1
5
.2

2
4

0
.4

2
4

0
.4

0
7

1
4
.2

0
2

1
3
.3

6
4

8
0
.4

4
0

0
.4

2
2

1
5
.1

2
1

1
4
.2

9
3

0
.3

9
1

0
.3

7
3

1
2
.6

5
8

1
1
.7

9
2

0
.4

5
2

0
.4

3
5

1
5
.9

6
3

1
5
.1

5
1

0
.4

2
1

0
.4

0
3

1
4
.1

9
7

1
3
.3

5
8

9
0
.4

3
7

0
.4

2
0

1
5
.1

2
5

1
4
.2

9
7

0
.3

9
0

0
.3

7
2

1
2
.5

4
8

1
1
.6

8
2

0
.4

5
2

0
.4

3
5

1
5
.9

2
8

1
5
.1

1
5

0
.4

1
8

0
.4

0
0

1
4
.1

5
2

1
3
.3

1
3

1
0

0
.4

3
4

0
.4

1
7

1
5
.0

0
6

1
4
.1

7
6

0
.3

8
8

0
.3

7
0

1
2
.4

0
7

1
1
.5

3
6

0
.4

5
2

0
.4

3
5

1
5
.8

8
3

1
5
.0

6
9

0
.4

1
6

0
.3

9
9

1
4
.1

4
5

1
3
.3

0
5

1
1

0
.4

3
2

0
.4

1
4

1
4
.7

9
8

1
3
.9

6
4

0
.3

8
7

0
.3

6
9

1
2
.2

9
9

1
1
.4

2
6

0
.4

5
2

0
.4

3
5

1
5
.8

4
7

1
5
.0

3
3

0
.4

1
5

0
.3

9
8

1
4
.1

3
2

1
3
.2

9
2

1
2

0
.4

3
0

0
.4

1
3

1
4
.7

4
8

1
3
.9

1
3

0
.3

8
7

0
.3

6
9

1
2
.2

0
0

1
1
.3

2
6

0
.4

5
1

0
.4

3
4

1
5
.8

0
7

1
4
.9

9
2

0
.4

1
4

0
.3

9
7

1
4
.1

2
0

1
3
.2

8
0

1
3

0
.4

2
8

0
.4

1
0

1
4
.6

2
9

1
3
.7

9
3

0
.3

8
7

0
.3

6
9

1
2
.1

5
9

1
1
.2

8
6

0
.4

5
1

0
.4

3
4

1
5
.7

9
8

1
4
.9

8
3

0
.4

1
4

0
.3

9
7

1
4
.1

1
4

1
3
.2

7
4

1
4

0
.4

2
8

0
.4

1
0

1
4
.6

2
4

1
3
.7

8
7

0
.3

8
7

0
.3

6
9

1
2
.1

4
8

1
1
.2

7
5

0
.4

5
0

0
.4

3
3

1
5
.7

7
9

1
4
.9

6
3

0
.4

1
5

0
.3

9
7

1
4
.1

2
0

1
3
.2

8
0

1
5

0
.4

2
8

0
.4

1
1

1
4
.6

2
8

1
3
.7

9
1

0
.3

8
7

0
.3

6
9

1
2
.1

5
5

1
1
.2

8
2

0
.4

5
0

0
.4

3
3

1
5
.7

7
3

1
4
.9

5
8

0
.4

1
5

0
.3

9
8

1
4
.1

2
1

1
3
.2

8
3

1
6

0
.4

2
8

0
.4

1
0

1
4
.6

2
6

1
3
.7

8
9

0
.3

8
7

0
.3

6
9

1
2
.1

5
7

1
1
.2

8
4

0
.4

5
0

0
.4

3
3

1
5
.7

6
8

1
4
.9

5
2

0
.4

1
5

0
.3

9
8

1
4
.1

2
5

1
3
.2

8
7

1
7

0
.4

2
8

0
.4

1
0

1
4
.6

2
9

1
3
.7

9
3

0
.3

8
7

0
.3

6
9

1
2
.1

6
2

1
1
.2

8
9

0
.4

5
0

0
.4

3
3

1
5
.7

6
2

1
4
.9

4
7

0
.4

1
6

0
.3

9
9

1
4
.1

3
2

1
3
.2

9
4

1
8

0
.4

2
8

0
.4

1
0

1
4
.6

2
2

1
3
.7

8
5

0
.3

8
7

0
.3

6
9

1
2
.1

5
9

1
1
.2

8
6

0
.4

5
0

0
.4

3
2

1
5
.7

5
5

1
4
.9

3
9

0
.4

1
6

0
.3

9
9

1
4
.1

3
7

1
3
.3

0
0

1
9

0
.4

2
8

0
.4

1
0

1
4
.6

2
4

1
3
.7

8
7

0
.3

8
7

0
.3

6
9

1
2
.1

5
5

1
1
.2

8
2

0
.4

4
9

0
.4

3
2

1
5
.7

5
3

1
4
.9

3
8

0
.4

1
6

0
.3

9
9

1
4
.1

3
2

1
3
.2

9
4

2
0

0
.4

2
8

0
.4

1
0

1
4
.6

1
9

1
3
.7

8
2

0
.3

8
7

0
.3

6
9

1
2
.1

5
2

1
1
.2

7
8

0
.4

5
0

0
.4

3
2

1
5
.7

5
2

1
4
.9

3
6

0
.4

1
7

0
.3

9
9

1
4
.1

3
2

1
3
.2

9
4

2
1

0
.4

2
8

0
.4

1
0

1
4
.6

1
1

1
3
.7

7
4

0
.3

8
8

0
.3

7
0

1
2
.1

5
7

1
1
.2

8
4

0
.4

4
9

0
.4

3
2

1
5
.7

4
4

1
4
.9

2
8

0
.4

1
7

0
.3

9
9

1
4
.1

3
9

1
3
.3

0
2

2
2

0
.4

2
8

0
.4

1
0

1
4
.6

0
1

1
3
.7

6
4

0
.3

8
8

0
.3

7
0

1
2
.1

5
7

1
1
.2

8
4

0
.4

4
9

0
.4

3
2

1
5
.7

3
7

1
4
.9

2
1

0
.4

1
7

0
.4

0
0

1
4
.1

4
6

1
3
.3

0
9

2
3

0
.4

2
7

0
.4

1
0

1
4
.5

9
0

1
3
.7

5
3

0
.3

8
8

0
.3

7
0

1
2
.1

5
3

1
1
.2

8
0

0
.4

4
9

0
.4

3
2

1
5
.7

3
5

1
4
.9

1
9

0
.4

1
7

0
.4

0
0

1
4
.1

4
8

1
3
.3

1
1

2
4

0
.4

2
7

0
.4

1
0

1
4
.5

8
6

1
3
.7

4
9

0
.3

8
8

0
.3

7
0

1
2
.1

5
3

1
1
.2

8
0

0
.4

4
9

0
.4

3
2

1
5
.7

3
5

1
4
.9

1
9

0
.4

1
7

0
.4

0
0

1
4
.1

5
0

1
3
.3

1
3

L
o
c
a
l
M

e
th

o
d

—
S
S
D

(2
1
×

2
1
)

L
o
c
a
l
M

e
th

o
d

—
N

X
C

(2
1
×

2
1
)

be
stin

t
9
8
.8

4
8

9
8
.1

9
7

1
0
0
.0

0
0

1
0
0
.0

0
0

9
8
.8

4
8

9
8
.1

9
7

1
0
0
.0

0
0

1
0
0
.0

0
0

9
6
.3

3
9

9
5
.6

5
1

1
0
0
.0

0
0

1
0
0
.0

0
0

9
6
.3

3
9

9
5
.6

5
1

1
0
0
.0

0
0

1
0
0
.0

0
0

be
stfl

o
a
t

0
.4

1
3

0
.3

9
5

1
0
.9

3
8

1
0
.0

6
2

0
.4

1
3

0
.3

9
5

1
0
.9

3
8

1
0
.0

6
2

0
.4

8
7

0
.4

7
0

1
2
.7

5
3

1
1
.9

0
8

0
.4

8
7

0
.4

7
0

1
2
.7

5
3

1
1
.9

0
8

t=
0

0
.6

5
0

0
.6

3
6

2
0
.9

4
9

2
0
.2

2
7

0
.6

5
0

0
.6

3
6

2
0
.9

4
9

2
0
.2

2
7

0
.7

1
6

0
.7

0
3

2
1
.4

2
3

2
0
.7

1
1

0
.7

1
6

0
.7

0
3

2
1
.4

2
3

2
0
.7

1
1

1
0
.4

0
6

0
.3

8
8

1
2
.5

3
1

1
1
.6

4
7

0
.3

5
7

0
.3

3
9

9
.8

9
1

8
.9

9
4

0
.4

3
0

0
.4

1
2

1
2
.9

2
2

1
2
.0

4
5

0
.3

9
3

0
.3

7
5

1
1
.5

3
0

1
0
.6

6
0

2
0
.4

0
5

0
.3

8
7

1
3
.0

4
9

1
2
.1

8
4

0
.3

3
1

0
.3

1
3

8
.5

5
0

7
.6

2
9

0
.4

0
7

0
.3

8
9

1
2
.5

6
5

1
1
.6

8
9

0
.3

5
3

0
.3

3
4

1
0
.4

3
5

9
.5

4
2

3
0
.4

0
3

0
.3

8
5

1
2
.9

8
7

1
2
.1

2
0

0
.3

3
5

0
.3

1
7

8
.7

6
9

7
.8

5
5

0
.4

0
2

0
.3

8
4

1
2
.5

7
7

1
1
.7

0
2

0
.3

4
8

0
.3

3
0

1
0
.2

4
5

9
.3

5
4

4
0
.4

0
2

0
.3

8
4

1
2
.9

5
2

1
2
.0

8
6

0
.3

4
0

0
.3

2
1

9
.0

3
1

8
.1

2
2

0
.4

0
2

0
.3

8
4

1
2
.7

5
0

1
1
.8

7
7

0
.3

4
6

0
.3

2
7

1
0
.0

7
8

9
.1

8
4

5
0
.4

0
3

0
.3

8
5

1
2
.8

8
4

1
2
.0

1
6

0
.3

4
4

0
.3

2
5

9
.3

2
2

8
.4

1
7

0
.4

0
1

0
.3

8
3

1
2
.8

0
3

1
1
.9

3
2

0
.3

4
3

0
.3

2
4

9
.9

0
4

9
.0

0
7

6
0
.4

0
4

0
.3

8
6

1
2
.8

5
0

1
1
.9

8
1

0
.3

5
0

0
.3

3
2

9
.7

8
7

8
.8

8
8

0
.4

0
0

0
.3

8
2

1
2
.8

1
1

1
1
.9

3
9

0
.3

4
3

0
.3

2
4

9
.8

8
0

8
.9

8
3

7
0
.4

0
4

0
.3

8
7

1
2
.8

0
9

1
1
.9

3
9

0
.3

5
5

0
.3

3
6

1
0
.0

7
6

9
.1

8
2

0
.3

9
9

0
.3

8
1

1
2
.7

3
7

1
1
.8

6
5

0
.3

4
2

0
.3

2
4

9
.8

3
0

8
.9

3
2

8
0
.4

0
5

0
.3

8
7

1
2
.7

8
2

1
1
.9

1
4

0
.3

5
8

0
.3

3
9

1
0
.2

7
0

9
.3

8
1

0
.3

9
4

0
.3

7
6

1
2
.5

5
7

1
1
.6

8
4

0
.3

4
2

0
.3

2
3

9
.7

9
2

8
.8

9
4

9
0
.4

0
6

0
.3

8
8

1
2
.8

5
9

1
1
.9

9
2

0
.3

6
0

0
.3

4
1

1
0
.4

1
2

9
.5

2
6

0
.3

9
1

0
.3

7
2

1
2
.3

9
4

1
1
.5

1
8

0
.3

4
2

0
.3

2
3

9
.7

6
7

8
.8

6
8

1
0

0
.4

0
8

0
.3

9
0

1
2
.9

6
3

1
2
.0

9
8

0
.3

6
1

0
.3

4
2

1
0
.4

7
5

9
.5

9
0

0
.3

8
9

0
.3

7
1

1
2
.2

8
8

1
1
.4

1
0

0
.3

4
2

0
.3

2
3

9
.7

4
6

8
.8

4
6

1
1

0
.4

1
0

0
.3

9
2

1
3
.0

5
5

1
2
.1

9
1

0
.3

6
1

0
.3

4
3

1
0
.5

1
2

9
.6

2
8

0
.3

8
8

0
.3

7
0

1
2
.2

5
0

1
1
.3

7
3

0
.3

4
1

0
.3

2
3

9
.7

1
2

8
.8

1
2

1
2

0
.4

1
1

0
.3

9
3

1
3
.0

9
6

1
2
.2

3
3

0
.3

6
2

0
.3

4
3

1
0
.5

5
0

9
.6

6
6

0
.3

8
7

0
.3

6
9

1
2
.2

1
8

1
1
.3

4
1

0
.3

4
1

0
.3

2
2

9
.6

5
8

8
.7

5
7

1
3

0
.4

1
1

0
.3

9
3

1
3
.1

1
6

1
2
.2

5
4

0
.3

6
2

0
.3

4
4

1
0
.5

7
2

9
.6

8
8

0
.3

8
7

0
.3

6
8

1
2
.1

7
1

1
1
.2

9
3

0
.3

4
1

0
.3

2
2

9
.6

3
1

8
.7

3
0

1
4

0
.4

1
2

0
.3

9
4

1
3
.1

6
3

1
2
.3

0
1

0
.3

6
2

0
.3

4
4

1
0
.5

6
6

9
.6

8
4

0
.3

8
7

0
.3

6
8

1
2
.1

6
1

1
1
.2

8
2

0
.3

4
0

0
.3

2
2

9
.6

0
4

8
.7

0
2

1
5

0
.4

1
3

0
.3

9
5

1
3
.2

4
2

1
2
.3

8
1

0
.3

6
2

0
.3

4
4

1
0
.5

4
1

9
.6

5
9

0
.3

8
6

0
.3

6
8

1
2
.1

6
1

1
1
.2

8
2

0
.3

4
0

0
.3

2
1

9
.5

2
9

8
.6

2
5

1
6

0
.4

1
4

0
.3

9
6

1
3
.2

9
7

1
2
.4

3
8

0
.3

6
3

0
.3

4
4

1
0
.5

2
1

9
.6

3
9

0
.3

8
6

0
.3

6
8

1
2
.1

4
6

1
1
.2

6
8

0
.3

4
0

0
.3

2
1

9
.4

7
5

8
.5

7
1

1
7

0
.4

1
4

0
.3

9
6

1
3
.3

1
5

1
2
.4

5
6

0
.3

6
3

0
.3

4
4

1
0
.4

9
6

9
.6

1
3

0
.3

8
6

0
.3

6
8

1
2
.1

2
8

1
1
.2

4
9

0
.3

3
9

0
.3

2
1

9
.4

2
6

8
.5

2
1

1
8

0
.4

1
5

0
.3

9
7

1
3
.3

4
9

1
2
.4

9
1

0
.3

6
3

0
.3

4
5

1
0
.4

9
4

9
.6

1
1

0
.3

8
5

0
.3

6
7

1
2
.1

0
7

1
1
.2

2
7

0
.3

3
9

0
.3

2
0

9
.3

6
0

8
.4

5
4

1
9

0
.4

1
5

0
.3

9
7

1
3
.3

7
6

1
2
.5

2
0

0
.3

6
3

0
.3

4
5

1
0
.4

8
4

9
.6

0
0

0
.3

8
5

0
.3

6
6

1
2
.0

7
3

1
1
.1

9
3

0
.3

3
9

0
.3

2
0

9
.3

0
4

8
.3

9
7

2
0

0
.4

1
5

0
.3

9
7

1
3
.3

5
8

1
2
.5

0
2

0
.3

6
3

0
.3

4
5

1
0
.4

7
5

9
.5

9
1

0
.3

8
4

0
.3

6
6

1
2
.0

4
8

1
1
.1

6
7

0
.3

3
8

0
.3

2
0

9
.2

6
3

8
.3

5
5

2
1

0
.4

1
4

0
.3

9
6

1
3
.3

3
0

1
2
.4

7
3

0
.3

6
3

0
.3

4
5

1
0
.4

6
8

9
.5

8
4

0
.3

8
4

0
.3

6
6

1
2
.0

3
0

1
1
.1

4
9

0
.3

3
8

0
.3

2
0

9
.2

2
0

8
.3

1
1

2
2

0
.4

1
4

0
.3

9
6

1
3
.3

3
5

1
2
.4

7
8

0
.3

6
3

0
.3

4
5

1
0
.4

5
3

9
.5

7
1

0
.3

8
3

0
.3

6
5

1
2
.0

1
3

1
1
.1

3
2

0
.3

3
8

0
.3

1
9

9
.1

7
7

8
.2

6
8

2
3

0
.4

1
4

0
.3

9
6

1
3
.3

4
0

1
2
.4

8
4

0
.3

6
3

0
.3

4
5

1
0
.4

4
4

9
.5

6
2

0
.3

8
3

0
.3

6
4

1
1
.9

8
5

1
1
.1

0
3

0
.3

3
8

0
.3

1
9

9
.1

5
3

8
.2

4
4

2
4

0
.4

1
4

0
.3

9
7

1
3
.3

8
3

1
2
.5

2
7

0
.3

6
3

0
.3

4
5

1
0
.4

2
1

9
.5

3
8

0
.3

8
2

0
.3

6
4

1
1
.9

6
7

1
1
.0

8
5

0
.3

3
8

0
.3

1
9

9
.1

3
5

8
.2

2
6

V
a
ria

tio
n
a
l
M

e
th

o
d

—
D

isc
re

tiz
a
tio

n
1

α
β

A
A

a
ll

A
A

n
o
n
-o

c
c
l

B
P

a
ll

B
P

n
o
n
-o

c
c
l

1
0
0
0

0
0
.4

0
3

0
.3

8
7

1
4
.0

1
7

1
3
.1

0
2

5
0

5
0
0

0
.3

5
4

0
.3

3
1

8
.8

1
9

7
.6

0
0

V
a
ria

tio
n
a
l
M

e
th

o
d

—
D

isc
re

tiz
a
tio

n
2

α
β

A
A

a
ll

A
A

n
o
n
-o

c
c
l

B
P

a
ll

B
P

n
o
n
-o

c
c
l

1
0
0

5
0
0

0
.3

6
7

0
.3

4
6

9
.1

7
3

7
.9

8
5

5
0

5
0
0

0
.4

2
0

0
.4

0
0

1
1
.9

0
6

1
0
.8

3
7

T
a
b
l
e

5
.3

:
C

orridor
A

A
and

B
P

disparity
error

statistics.
B

est
result

of
each

category
is

in
bold.

B
est

overall
result

is
underlined.

86 CHAPTER 5. EXPERIMENTAL RESULTS

L
o
c
a
l
M

e
th

o
d

—
S
S
D

(9
×

9
)

L
o
c
a
l
M

e
th

o
d

—
N

X
C

(9
×

9
)

G
S
(5×

5×
3
)

G
S
(2

1×
2
1×

7
)

G
S
(5×

5×
3
)

G
S
(2

1×
2
1×

7
)

A
A

B
P

A
A

B
P

A
A

B
P

A
A

B
P

ite
ra

tio
n

(t)
a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

be
stin

t
1
0
4
.3

3
4

1
0
3
.0

6
6

1
0
0
.0

0
0

1
0
0
.0

0
0

1
0
4
.3

3
4

1
0
3
.0

6
6

1
0
0
.0

0
0

1
0
0
.0

0
0

1
0
4
.9

3
3

1
0
3
.8

2
4

1
0
0
.0

0
0

1
0
0
.0

0
0

1
0
4
.9

3
3

1
0
3
.8

2
4

1
0
0
.0

0
0

1
0
0
.0

0
0

be
stfl

o
a
t

0
.7

9
4

0
.7

0
6

1
5
.8

2
6

1
3
.8

7
6

0
.7

9
4

0
.7

0
6

1
5
.8

2
6

1
3
.8

7
6

0
.8

4
3

0
.7

5
5

1
6
.4

0
3

1
4
.4

6
7

0
.8

4
3

0
.7

5
5

1
6
.4

0
3

1
4
.4

6
7

t=
0

1
.6

9
0

1
.6

3
8

4
0
.8

5
1

3
9
.6

9
3

1
.6

9
0

1
.6

3
8

4
0
.8

5
1

3
9
.6

9
3

1
.7

0
3

1
.6

5
5

3
9
.4

2
6

3
8
.2

8
9

1
.7

0
3

1
.6

5
5

3
9
.4

2
6

3
8
.2

8
9

1
1
.0

0
2

0
.9

3
0

2
1
.5

8
8

1
9
.8

2
5

0
.8

4
0

0
.7

7
1

2
0
.1

8
1

1
8
.4

8
1

0
.9

8
8

0
.9

1
7

2
0
.2

6
3

1
8
.4

9
8

0
.8

1
0

0
.7

4
1

1
8
.8

7
5

1
7
.1

5
0

2
0
.8

5
1

0
.7

7
2

1
7
.4

2
3

1
5
.5

2
8

0
.6

9
9

0
.6

2
5

1
5
.4

7
6

1
3
.6

1
5

0
.8

1
2

0
.7

3
2

1
6
.3

0
5

1
4
.3

9
4

0
.6

9
8

0
.6

2
4

1
5
.1

8
8

1
3
.3

2
2

3
0
.7

9
5

0
.7

1
2

1
5
.9

6
0

1
4
.0

1
4

0
.6

8
7

0
.6

1
1

1
4
.8

5
8

1
2
.9

5
9

0
.7

5
7

0
.6

7
4

1
5
.0

3
5

1
3
.0

7
8

0
.6

8
6

0
.6

1
2

1
4
.7

5
4

1
2
.8

5
3

4
0
.7

6
4

0
.6

8
0

1
5
.2

4
0

1
3
.2

7
5

0
.6

8
3

0
.6

0
6

1
4
.6

7
2

1
2
.7

5
5

0
.7

3
6

0
.6

5
1

1
4
.5

2
2

1
2
.5

4
2

0
.6

8
1

0
.6

0
5

1
4
.6

1
6

1
2
.6

9
3

5
0
.7

4
3

0
.6

5
7

1
4
.7

7
9

1
2
.7

9
9

0
.6

8
0

0
.6

0
2

1
4
.5

7
4

1
2
.6

4
2

0
.7

2
5

0
.6

3
9

1
4
.2

0
2

1
2
.2

0
1

0
.6

7
5

0
.5

9
8

1
4
.5

0
0

1
2
.5

5
6

6
0
.7

3
4

0
.6

4
7

1
4
.5

6
7

1
2
.5

7
8

0
.6

7
8

0
.5

9
9

1
4
.5

0
2

1
2
.5

5
6

0
.7

1
9

0
.6

3
2

1
4
.0

3
3

1
2
.0

2
7

0
.6

7
3

0
.5

9
5

1
4
.4

7
7

1
2
.5

2
1

7
0
.7

2
8

0
.6

4
1

1
4
.4

1
0

1
2
.4

0
8

0
.6

7
7

0
.5

9
8

1
4
.4

8
6

1
2
.5

2
6

0
.7

1
5

0
.6

2
8

1
3
.9

3
9

1
1
.9

4
2

0
.6

7
4

0
.5

9
5

1
4
.4

8
1

1
2
.5

1
3

8
0
.7

2
3

0
.6

3
6

1
4
.2

9
7

1
2
.2

9
3

0
.6

7
7

0
.5

9
7

1
4
.4

8
6

1
2
.5

2
0

0
.7

1
3

0
.6

2
5

1
3
.9

0
8

1
1
.9

0
9

0
.6

7
7

0
.5

9
8

1
4
.5

1
7

1
2
.5

3
7

L
o
c
a
l
M

e
th

o
d

—
S
S
D

(2
1
×

2
1
)

L
o
c
a
l
M

e
th

o
d

—
N

X
C

(2
1
×

2
1
)

be
stin

t
1
0
5
.8

2
1

1
0
4
.6

9
7

1
0
0
.0

0
0

1
0
0
.0

0
0

1
0
5
.8

2
1

1
0
4
.6

9
7

1
0
0
.0

0
0

1
0
0
.0

0
0

1
0
5
.7

3
0

1
0
4
.6

7
6

1
0
0
.0

0
0

1
0
0
.0

0
0

1
0
5
.7

3
0

1
0
4
.6

7
6

1
0
0
.0

0
0

1
0
0
.0

0
0

be
stfl

o
a
t

0
.7

6
0

0
.6

7
5

1
5
.7

0
4

1
3
.8

3
5

0
.7

6
0

0
.6

7
5

1
5
.7

0
4

1
3
.8

3
5

0
.7

6
0

0
.6

7
7

1
5
.5

5
8

1
3
.6

9
6

0
.7

6
0

0
.6

7
7

1
5
.5

5
8

1
3
.6

9
6

t=
0

1
.2

7
7

1
.2

2
1

3
5
.9

8
5

3
4
.8

0
0

1
.2

7
7

1
.2

2
1

3
5
.9

8
5

3
4
.8

0
0

1
.2

4
0

1
.1

8
4

3
5
.0

5
7

3
3
.8

4
4

1
.2

4
0

1
.1

8
4

3
5
.0

5
7

3
3
.8

4
4

1
0
.8

3
9

0
.7

6
7

1
9
.9

9
3

1
8
.2

6
2

0
.7

5
7

0
.6

8
7

1
8
.1

3
9

1
6
.3

5
0

0
.8

2
2

0
.7

4
9

1
9
.2

4
7

1
7
.4

7
7

0
.7

2
6

0
.6

5
5

1
6
.8

1
8

1
4
.9

6
9

2
0
.7

5
9

0
.6

8
0

1
6
.5

8
9

1
4
.7

2
9

0
.6

9
8

0
.6

2
6

1
5
.7

5
1

1
3
.8

6
3

0
.7

4
3

0
.6

6
4

1
6
.1

5
1

1
4
.2

4
2

0
.6

9
0

0
.6

1
8

1
5
.3

8
6

1
3
.4

8
3

3
0
.7

3
5

0
.6

5
3

1
5
.4

2
8

1
3
.5

2
3

0
.6

9
4

0
.6

2
0

1
5
.4

8
0

1
3
.5

6
2

0
.7

2
3

0
.6

4
1

1
5
.1

9
6

1
3
.2

5
3

0
.6

8
7

0
.6

1
3

1
5
.2

2
5

1
3
.2

9
2

4
0
.7

2
9

0
.6

4
6

1
4
.9

9
5

1
3
.0

7
5

0
.6

9
3

0
.6

1
9

1
5
.3

5
4

1
3
.4

3
0

0
.7

1
5

0
.6

3
1

1
4
.7

9
5

1
2
.8

4
9

0
.6

8
5

0
.6

1
0

1
5
.1

4
7

1
3
.2

0
5

5
0
.7

2
5

0
.6

4
1

1
4
.7

3
5

1
2
.8

0
7

0
.6

9
4

0
.6

1
8

1
5
.2

9
3

1
3
.3

6
4

0
.7

1
1

0
.6

2
7

1
4
.5

5
7

1
2
.6

0
7

0
.6

8
5

0
.6

0
9

1
5
.0

9
9

1
3
.1

5
0

6
0
.7

2
2

0
.6

3
9

1
4
.5

8
9

1
2
.6

6
5

0
.6

9
5

0
.6

1
9

1
5
.2

6
3

1
3
.3

3
2

0
.7

1
0

0
.6

2
5

1
4
.4

6
0

1
2
.5

0
8

0
.6

8
5

0
.6

0
9

1
5
.0

8
2

1
3
.1

3
0

7
0
.7

2
0

0
.6

3
6

1
4
.4

9
4

1
2
.5

7
1

0
.6

9
6

0
.6

2
0

1
5
.2

6
4

1
3
.3

2
9

0
.7

0
8

0
.6

2
4

1
4
.3

7
7

1
2
.4

2
4

0
.6

8
6

0
.6

0
9

1
5
.0

6
7

1
3
.1

0
8

8
0
.7

1
8

0
.6

3
4

1
4
.4

1
6

1
2
.4

9
0

0
.6

9
8

0
.6

2
2

1
5
.2

8
9

1
3
.3

5
1

0
.7

0
7

0
.6

2
3

1
4
.3

1
0

1
2
.3

6
3

0
.6

8
6

0
.6

1
0

1
5
.0

5
3

1
3
.0

9
0

L
o
c
a
l
M

e
th

o
d

N
X

C
(2

1
×

2
1
)

d
w

S
S
D

(2
1
×

2
1
)

G
S
(2

1×
2
1×

7
)

A
A

B
P

ite
ra

tio
n

(t)
a
ll

n
o
n
-o

c
c
l

a
ll

n
o
n
-o

c
c
l

be
stin

t
1
0
5
.7

3
0

1
0
4
.6

7
6

1
0
0
.0

0
0

1
0
0
.0

0
0

be
stfl

o
a
t

0
.7

6
3

0
.6

9
0

1
5
.3

9
9

1
3
.6

2
7

t=
0

1
.0

5
6

1
.0

0
2

2
6
.9

8
1

2
5
.6

2
3

1
0
.7

5
9

0
.6

9
3

1
7
.1

0
5

1
5
.2

9
1

2
0
.7

3
7

0
.6

6
9

1
6
.3

2
7

1
4
.4

7
7

3
0
.7

3
3

0
.6

6
5

1
6
.1

8
4

1
4
.3

1
8

4
0
.7

3
4

0
.6

6
5

1
6
.1

0
4

1
4
.2

3
3

5
0
.7

3
5

0
.6

6
6

1
6
.0

7
8

1
4
.2

0
3

6
0
.7

3
5

0
.6

6
6

1
6
.0

3
9

1
4
.1

5
9

7
0
.7

3
5

0
.6

6
6

1
6
.0

1
4

1
4
.1

3
3

8
0
.7

3
5

0
.6

6
5

1
5
.9

8
5

1
4
.1

0
0

V
a
ria

tio
n
a
l
M

e
th

o
d

—
D

isc
re

tiz
a
tio

n
1

α
β

A
A

a
ll

A
A

n
o
n
-o

c
c
l

B
P

a
ll

B
P

n
o
n
-o

c
c
l

1
0
0
0

0
0
.6

6
6

0
.5

9
7

1
6
.7

9
9

1
4
.7

9
9

5
0

5
0
0

0
.6

1
6

0
.5

3
9

1
3
.4

8
8

1
1
.3

9
2

V
a
ria

tio
n
a
l
M

e
th

o
d

—
D

isc
re

tiz
a
tio

n
2

α
β

A
A

a
ll

A
A

n
o
n
-o

c
c
l

B
P

a
ll

B
P

n
o
n
-o

c
c
l

5
0

5
0
0

0
.6

5
2

0
.5

7
6

1
4
.4

1
3

1
2
.3

4
5

T
a
b
l
e

5
.4

:
T

sukuba
A

A
and

B
P

disparity
error

statistics.
B

est
result

of
each

category
is

in
bold.

B
est

overall
result

is
underlined.

Chapter 6

Summary and Outlook

In this work, we have presented methods for stereo reconstruction from two
major categories: local and global. Both methods are designed to be espe-
cially apt to reconstruct scenes whose geometry contains slanted surfaces,
i.e. allowing linear variations of depth/disparity, whereas the usual methods
only consider constancy of those values.

Our work as far as the local method is concerned is based on [LZ05].
However, in [LZ06] the authors additionally use second order properties and
chose to work in Euclidean space, which is more complicated and which we
chose to ignore after carefully evaluating it, since the simple modification pre-
sented here already improves results a lot. Furthermore, it is unclear if that
approach would work equally well for slanted surfaces. In theory curved sur-
faces are a superset of slanted surfaces; however, the implementation would
have drawbacks like the inability to cope with planes that are (exactly) or-
thogonal to the line of sight etc. There may however be more complex scenes
from which that approach might be able to extract more information than
our method does.

Outliers, thresholding, etc. are a curse of local methods, therefore we have
also investigated a global method. In it, we have included a related smooth-
ness constraint, namely allowing locally affine transformations instead of lo-
cally constant ones (which is exactly the change from fronto-parallel surfaces
to slanted ones). We have started with a classic Horn/Schunck method and
supplemented it with a higher order regularizer, the combination of which
we have shown to improve results, even with the simplest of discretizations.

Future work may include the investigation, implementation and compar-
ison of a local method that actually can cope with all sorts of geometry or
“curved surfaces”, as the previously mentioned work in [LZ06] seemed not
very feasible. As we show in Appendix A, a careful analysis for the geometric
support space diffusion method and its initialization may also be required.

One could even think of integrating such consistency of curved surfaces
into a variational model: future work may include the investigation of more
complex higher order regularization terms. Such a method in the anisotropic

87

88 CHAPTER 6. SUMMARY AND OUTLOOK

setting would e.g. permit locally affine variations along edges/structures
instead of locally constant ones. This need not be related to stereo recon-
struction in particular, but is a general issue regarding diffusion methods
that remains fairly uninvestigated, and might prove useful in any number
of domains like optic flow, image enhancement, inpainting (equally image
compression) or medical imaging.

Last but not least, not only the smoothness assumptions are important,
the data term is too. Therefore, future work might also address more complex
data terms than the linearized SSD we use in this work. Those could e.g. be
inspired from shape-from-shading, that is, taking into account illumination
effects or photometric invariants of color images, and embedding those into
a variational model. Finally, also occlusion handling might need further
investigation as does the investigation of any of these methods in a multi-
view, spatio-temporal or real-time scenario.

Appendix A

Diffusion Process in Local
Method

A.1 The Problem

In Section 3.4, we have introduced geometric consistency of surfaces. Several
iterative procedures were available to sort out which of the several fits per
pixel was the right one. What matters is how those results behave. The
better a neighborhood, the higher the result should be. The emphasis is
on “better”: it is ambiguous what is better; better geometric compatibil-
ity or better geometric support. What happens when neither one is really
convincing or when both are?

We have first experimented with the method proposed in [LZ05], which
we show here:

st
i =

1− di

d
, if t = 0

n ·
P

j∈Ni
gijs

t−1
jP

j∈Ni
st−1
j

, if t > 0
(A.1)

where n = 1 and Ni is a neighborhood around point i in (x, y, d)-space.
We were not satisfied. It is especially unclear why choose a value that is
variable across the image like

∑
s to normalize. Additionally it does not just

normalize — it gives a result close to the average value of g while penalizing
values of g that are off its average in the wrong “direction”, i.e. away from
s. We show its behavior in Table A.1 and Figure A.2. We claim we can do
better: a behavior as shown in Table A.2 (symmetric) is preferable.

A.2 Our Improved Method

Our improvement is initially derived from the idea that normalizing as in
(A.1) with n = 1 we have found does not work well in practice: a neighbor-
hood containing many points has more significance than one with few points

89

90 APPENDIX A. DIFFUSION PROCESS IN LOCAL METHOD

s good s bad

g good very good good
g bad bad bad

Table A.1: s and g vs. the result (new s) obtained using Expression (A.1).

which may only provide a small number of (possibly erroneous) matches.
One therefore additionally has to account for the average support (using the
number of points in the neighborhood Ni):∑

j∈Ni
gijs

t−1
j∑

j∈Ni
st−1
j

·
∑

j∈Ni
st−1
j

|Ni|︸ ︷︷ ︸
n

=

∑
j∈Ni

gijs
t−1
j

|Ni|
(A.2a)

s good s bad

g good good bad
g bad bad very bad

Table A.2: s and g vs. the result obtained using our diffusion method

We take it even one step further and use

n =

∑
j∈Ni

st−1
j

|Ni|
· |Ni|
Nmax

(A.2b)

in expression (A.1), which now represents not only the average support
value but also the number of neighbors seen in the current pixel (|Ni|) vs.
the highest number of neighbors ever seen from a pixel in the entire image
(Nmax), i.e. a good overall indicator of how representative the neighborhood
is in terms of trust (support) and size (number of points).

The second problem was the behavior of the original method as we have
shown in Table A.1: it does not penalize enough. It even seems to reward
when g and s match in some cases (which makes no sense as they are not
related) as one can see in Figure A.1(b) and (d), which we now describe in
more detail.

In Figure A.1 we have shown a few examples of combinations of geometric
compatibilities g and geometric support s interacting to produce the new
support value at the current pixel. The examples are made up of a five-
pixel neighborhood (horizontal axis), their respective values of s and g and
the results produced by the respective normalizers shown as horizontal lines.

A.2. OUR IMPROVED METHOD 91

One can see that using our method, good support with good compatibility
is rewarded, whereas if either support or compatibility is bad (or both are)
then this is penalized.

We emphasize again: whether g disagrees or agrees with s should be
unrelated, however in the original method it seems to behave like it was
somehow related. Also, if one of both s or g is bad the result should a bad
score, see Figure A.2(b) and (d): a good compatibility to a neighborhood
we cannot trust means we should not trust it in the future either. The
original method’s result (support in the current pixel for the next time step)
is depicted with a yellow line, our method with a green one. Figure A.2
shows similar examples, only for more extreme cases.

(a) mostly disagree (b) agree

(c) mostly disagree (d) agree

Figure A.1: Comparison of penalizations for mixed cases (good and bad values). We
indicate how much s and g agree.

We have also compared the methods using combinations of two sets of
neighborhood pixels. Listed in Table A.3 are all combinations of two sets of
matches with neighborhoods containing 10 respectively 100 points with all
combinations of good and bad geometric consistency and geometric support,
where good here means 0.9 and bad means 0.1 for s and g alike. Values
higher than 0.7 are highlighted in green, values lower than 0.3 in red. As
usual we operate on the closed interval (0, 1).

Our method (the column entitled with (III)) gives a good compromise
between good and bad neighborhoods. The original method is located in
column (I); the other columns contain the results of other methods that we

92 APPENDIX A. DIFFUSION PROCESS IN LOCAL METHOD

(a) both good (b) g good, s bad

(c) s good, g bad (d) both bad

Figure A.2: Comparison of penalizations for extreme cases of s and g.

have tried and are of no importance here. Our method might look a little bit
conservative, especially the low values are really very small, but it removes
lots of noise (i.e. wrong matches) and converges fast.

In Table A.3, in the row prefixed with (3), we notice the same behavior
(deficiency) of the original method as mentioned before. Table A.4 shows
the same evaluation but for two sets with the same number of elements;
obviously each category degrades to the same results within, but we can still
see our method performs as it should, i.e. here it mostly resorts to “don’t
know” (0.45 ≈ 0.5) as results are mostly ambiguous. For the cases where
really bad things happen, it penalizes further.

(1), (2) and (3) at the bottom and left of Table A.3 denote what should
happen under certain conditions, namely those from Table A.2. We can see
those conditions applied and how the different methods behave. Note that
our method (the column entitled with (III)) fulfills all three conditions.

Finally, in addition to the results in Chapter 5 we show in Figure A.3
the RMS disparity error for the University of Bonn Corridor Sequence with
ongoing iterations (up to 24) for the original and for our method, with SSD
and NXC as initializations and two geometric support neighborhood sizes:
5 × 5 × 3 and 21 × 21 × 7. One can see that the original method even gets
a little worse after a few steps. Our method wouldn’t even need that many
iterations to converge, and it only gets better.

orig denotes the original method, npn denotes the method where we

A.2. OUR IMPROVED METHOD 93

N
s

0.9
0.9

0.1
0.1

g
0.9

0.1
0.9

0.1
100

10
0

0
0.83

0.9
110

0.74
0.68

0.81
0.43

10
100

0
0

0.17
0.9

110
0.16

0.03
0.81

0.14
100

100
0

0
0.5

0.9
200

0.45
0.25

0.81
0.32

10
10

0
0

0.5
0.9

20
0.45

0.25
0.81

0.32
0

100
10

0
0.11

0.52
110

0.09
0.02

0.43
0.09

0
10

100
0

0.52
0.11

110
0.09

0.43
0.02

0.09
0

100
100

0
0.18

0.18
200

0.09
0.09

0.09
0.09

0
10

10
0

0.18
0.18

20
0.09

0.09
0.09

0.09
0

0
10

100
0.17

0.1
110

0.02
0.03

0.01
0.06

(1)
0

0
100

10
0.83

0.1
110

0.08
0.68

0.01
0.09

0
0

100
100

0.5
0.1

200
0.05

0.25
0.01

0.08
0

0
10

10
0.5

0.1
20

0.05
0.25

0.01
0.08

100
0

10
0

0.9
0.83

110
0.74

0.81
0.68

0.43
10

0
100

0
0.9

0.17
110

0.16
0.81

0.03
0.14

100
0

100
0

0.9
0.5

200
0.45

0.81
0.25

0.32
10

0
10

0
0.9

0.5
20

0.45
0.81

0.25
0.32

100
0

0
10

0.89
0.89

110
0.74

0.74
0.74

0.45
(2)

10
0

0
100

0.48
0.48

110
0.08

0.08
0.08

0.24
(3)

100
0

0
100

0.82
0.82

200
0.41

0.41
0.41

0.41
10

0
0

10
0.82

0.82
20

0.41
0.41

0.41
0.41

0
100

0
10

0.1
0.83

110
0.08

0.01
0.68

0.09
0

10
0

100
0.1

0.17
110

0.02
0.01

0.03
0.06

0
100

0
100

0.1
0.5

200
0.05

0.01
0.25

0.08
0

10
0

10
0.1

0.5
20

0.05
0.01

0.25
0.08

(1)
no trust/support but som

e good com
pat. -> should not be propagated

* V
E

R
Y B

A
D

(2)
m

any very bad points (no trust and no com
pat.) -> should not be propagated

(3)
m

any very good and very bad points -> should yield at m
ost “don't know

” (0.5)

G
O

O
D

s+/g+
B

A
D

s+/g-
B

A
D

s-/g+
V

B
*

s-/g-
(I)

S
U

M
(gs)/S

U
M

(s)
(II)

S
U

M
(gs)/S

U
M

(g)
(III)

S
U

M
(gs)/N

(S
U

M
(gs)/S

U
M

(s))
*(S

U
M

(g)/N
)

(S
U

M
(gs)/S

U
M

(g))
*(S

U
M

(s)/N
)

(S
U

M
(gs)/

S
U

M
(g)*S

U
M

(s))

T
a
b
l
e

A
.3

:
D

ifferent
geom

etric
support

iterative
procedures.

c
1

=
100,

c
2

=
10.

See
text

for
details.

94 APPENDIX A. DIFFUSION PROCESS IN LOCAL METHOD

N
s

0.9
0.9

0.1
0.1

g
0.9

0.1
0.9

0.1
100

100
0

0
0.5

0.9
200

0.45
0.25

0.81
0.32

100
100

0
0

0.5
0.9

200
0.45

0.25
0.81

0.32
100

100
0

0
0.5

0.9
200

0.45
0.25

0.81
0.32

100
100

0
0

0.5
0.9

200
0.45

0.25
0.81

0.32
0

100
100

0
0.18

0.18
200

0.09
0.09

0.09
0.09

0
100

100
0

0.18
0.18

200
0.09

0.09
0.09

0.09
0

100
100

0
0.18

0.18
200

0.09
0.09

0.09
0.09

0
100

100
0

0.18
0.18

200
0.09

0.09
0.09

0.09
0

0
100

100
0.5

0.1
200

0.05
0.25

0.01
0.08

0
0

100
100

0.5
0.1

200
0.05

0.25
0.01

0.08
0

0
100

100
0.5

0.1
200

0.05
0.25

0.01
0.08

0
0

100
100

0.5
0.1

200
0.05

0.25
0.01

0.08
100

0
100

0
0.9

0.5
200

0.45
0.81

0.25
0.32

100
0

100
0

0.9
0.5

200
0.45

0.81
0.25

0.32
100

0
100

0
0.9

0.5
200

0.45
0.81

0.25
0.32

100
0

100
0

0.9
0.5

200
0.45

0.81
0.25

0.32
100

0
0

100
0.82

0.82
200

0.41
0.41

0.41
0.41

100
0

0
100

0.82
0.82

200
0.41

0.41
0.41

0.41
100

0
0

100
0.82

0.82
200

0.41
0.41

0.41
0.41

100
0

0
100

0.82
0.82

200
0.41

0.41
0.41

0.41
0

100
0

100
0.1

0.5
200

0.05
0.01

0.25
0.08

0
100

0
100

0.1
0.5

200
0.05

0.01
0.25

0.08
0

100
0

100
0.1

0.5
200

0.05
0.01

0.25
0.08

0
100

0
100

0.1
0.5

200
0.05

0.01
0.25

0.08

* V
E

R
Y B

A
D

G
O

O
D

s+/g+
B

A
D

s+/g-
B

A
D

s-/g+
V

B
*

s-/g-
(I)

S
U

M
(gs)/S

U
M

(s)
(II)

S
U

M
(gs)/S

U
M

(g)
(III)

S
U

M
(gs)/N

(S
U

M
(gs)/S

U
M

(s))
*(S

U
M

(g)/N
)

(S
U

M
(gs)/S

U
M

(g))
*(S

U
M

(s)/N
)

(S
U

M
(gs)/

S
U

M
(g)*S

U
M

(s))

T
a
b
l
e

A
.4

:
D

ifferent
geom

etric
support

iterative
procedures.

c
1

=
100,

c
2

=
100.

See
text

for
details.

A.2. OUR IMPROVED METHOD 95

normalize by the number of points in the neighborhood of that pixel, as in
(A.2a). npnmax denotes the method where we additionally normalize by the
maximum number of neighbors seen across the entire image, as in (A.2b).
Figure A.4 additionally shows the evolution of the diffusion process and the
corresponding RMS error for different initializations and window sizes.

(a) original method (b) our method

Figure A.3: RMS disparity error of the Corridor Sequence for the two methods with
different initializations and support regions.

We have not gone beyond this empiric investigation, but we wanted how-
ever to show what was behind our custom method of aggregating support,
which works well in practice.

96 APPENDIX A. DIFFUSION PROCESS IN LOCAL METHOD

(a) 9× 9 SSD and 5× 5× 3 GSR (b) 9× 9 SSD and 21× 21× 7 GSR

(c) 9× 9 NXC and 5× 5× 3 GSR (d) 9× 9 NXC and 21× 21× 7 GSR

Figure A.4: Comparison of Corridor Sequence with different initializations, geometric
support regions (GSRs) and diffusion methods. (lower is better)

Bibliography

[Ana87] P. Anandan. Measuring Visual Motion from Image Sequences.
Ph.D. thesis, University of Massachusetts Amherst, Amherst,
Massachusetts, USA, 1987.

[BAHH92] J. R. Bergen, P. Anandan, K. J. Hanna and R. Hingorani. Hier-
archical Model-Based Motion Estimation. In Computer Vision –
ECCV 1992, volume 588 of Lecture Notes in Computer Science,
pages 237–252. Springer, Berlin, 1992.

[BBH93] R. C. Bolles, H. H. Baker and M. J. Hannah. The JISCT Stereo
Evaluation. In Proceedings of the DARPA Image Understanding
Workshop, pages 263–274. 1993.

[BBPW04] T. Brox, A. Bruhn, N. Papenberg and J. Weickert. High ac-
curacy optic flow estimation based on a theory for warping. In
T. Pajdla and J. Matas, editors, Computer Vision – ECCV 2004,
volume 3024 of Lecture Notes in Computer Science, pages 25–36.
Springer, Berlin, 2004.

[BFB94] J. L. Barron, D. J. Fleet and S. S. Beauchemin. Performance
of optical flow techniques. International Journal of Computer
Vision, 12(1):pages 43–77, February 1994.

[BG07] M. Bleyer and M. Gelautz. Graph-cut-based stereo matching
using image segmentation with symmetrical treatment of occlu-
sions. Signal Processing: Image Communication, 22(2):pages
127–143, 2007.

[Bru06] A. Bruhn. Variational Optic Flow Computation – Accurate Mod-
elling and Efficient Numerics. Ph.D. thesis, Department of Math-
ematics and Comptuer Science, Saarland University, Germany,
July 2006.

[Bru07] A. Bruhn. Correspondence Problems in Computer Vision. Lec-
ture at Saarland University, Saarbrücken, Germany, 2007.

[BT99] S. Birchfield and C. Tomasi. Multiway Cut for Stereo and Motion
with Slanted Surfaces. International Conference on Computer
Vision, 1(11):pages 489–495, 1999.

97

98 BIBLIOGRAPHY

[BVZ01] Y. Boykov, O. Veksler and R. Zabih. Fast Approximate En-
ergy Minimization via Graph Cuts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(11):pages 1222–1239,
2001.

[Can86] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(6):pages 679–698, 1986.

[Col96] R. T. Collins. A Space-Sweep Approach to True Multi-Image
Matching. In Proceedings of the 1996 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR ’96), pages 358–
363. IEEE Society Press, Washington, DC, USA, 1996.

[Dev74] P. Dev. Segmentation processes in visual perception: A coop-
erative neural model. In Proceedings of the 1974 Conference on
Biologically Motivated Automata Theory. 1974.

[Goe03] M. Goesele. Computer Graphics II — 3-D Scanning. Lecture at
Saarland University, Saarbrücken, Germany, 2003.

[Han74] M. J. Hannah. Computer Matching of Areas in Stereo Images.
Ph.D. thesis, Stanford University, 1974.

[Hea01] M. T. Heath. Scientific Computing. McGraw-Hill Higher Edu-
cation, 2001.

[HEH05] D. Hoiem, A. A. Efros and M. Hebert. Automatic photo pop-
up. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages
577–584. ACM Press, New York, NY, USA, 2005.

[HS81] B. K. Horn and B. G. Schunck. Determining optical flow. Arti-
ficial Intelligence, 17:pages 185–203, 1981.

[KO94] T. Kanade and M. Okutomi. A Stereo Matching Algorithm with
an Adaptive Window: Theory and Experiment. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 16(9):pages
920–932, 1994.

[LK81] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of the
Seventh International Joint Conference on Artificial Intelligence,
pages 674–679. Vancouver, Canada, August 1981.

[Luc84] B. D. Lucas. Generalized Image Matching by the Method of Dif-
ferences. Ph.D. thesis, School of Computer Science, Carnegie–
Mellon University, Pittsburgh, PA, 1984.

BIBLIOGRAPHY 99

[LZ05] G. Li and S. W. Zucker. Stereo for Slanted Surfaces: First Order
Disparities and Normal Consistency. In A. Rangarajan, B. C.
Vemuri and A. L. Yuille, editors, Energy Minimization Meth-
ods in Computer Vision and Pattern Recognition – EMMCVPR
2005, volume 3757 of Lecture Notes in Computer Science, pages
617–632. Springer, Berlin, 2005.

[LZ06] G. Li and S. W. Zucker. Differential Geometric Consistency Ex-
tends Stereo To Curved Surfaces. In A. Leonardis, H. Bischof and
A. Pinz, editors, Computer Vision – ECCV 2006, volume 3953
of Lecture Notes in Computer Science, pages 44–57. Springer,
Berlin, 2006.

[Nis87] H. K. Nishihara. PRISM: Practical Real-Time Imaging Stereo
Matcher. pages 63–72, 1987.

[OK91] M. Okutomi and T. Kanade. A Multiple Baseline Stereo. In
Proceedings of the 1991 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’91), pages 63–69. IEEE Society
Press, 1991.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery. Numerical Recipes in C. Cambridge University Press, Cam-
bridge, UK, second edition, 1992.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2003.

[SBW05] N. Slesareva, A. Bruhn and J. Weickert. Optic Flow Goes Stereo:
A Variational Method for Estimating Discontinuity-Preserving
Dense Disparity Maps. In Pattern Recognition, volume 3663
of Lecture Notes in Computer Science, pages 33–40. Springer,
Berlin, 2005.

[SS96] D. Scharstein and R. Szeliski. Stereo Matching with Non-Linear
Diffusion. In Proceedings of the 1996 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR ’96), page 343.
IEEE Society Press, Washington, DC, USA, 1996.

[SS02] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms. Interna-
tional Journal of Computer Vision, 47(1–3):pages 7–42, 2002.

[SZ00] R. Szeliski and R. Zabih. An Experimental Comparison of Stereo
Algorithms. In Vision Algorithms: Theory and Practice, volume
1883 of Lecture Notes in Computer Science, pages 1–19. Springer,
Berlin, 2000.

100 BIBLIOGRAPHY

[TV98] E. Trucco and A. Verri. Introductory Techniques for 3-D Com-
puter Vision. Prentice Hall, Englewood Cliffs, 1998.

[Vek01] O. Veksler. Stereo Matching by Compact Windows via Mini-
mum Ratio Cycle. International Conference on Computer Vi-
sion, 1:page 540, 2001.

[Wik08] Wikipedia. Epipolar geometry — Wikipedia, The Free Encyclo-
pedia, 2008. [Online; accessed 10-January-2008].

[You50] D. Young. Iterative Methods for Solving Partial Difference Equa-
tions of Elliptic Type. Ph.D. thesis, Harward University, Cam-
bridge, Massachusetts, USA, 1950.

List of Figures

1.1 Violation of the frontal parallel plane assumption 13

2.1 Pinhole Camera Model . 20

2.2 Epipolar geometry with two cameras 21

2.3 Rectified stereo pair . 23

3.1 Block Matching Method . 25

3.2 Two perspectives of a room (Case 1) 29

3.3 Two perspectives of a room (Case 2) 30

3.4 First order disparity derivatives and deformed windows 32

3.5 Surface patch with possible correspondences 33

3.6 Stereo Algorithm in a Nutshell 35

4.1 Optic flow between two frames 39

4.2 Convex and non-convex functions and coarse-to-fine hierarchy 41

4.3 Illustration of the indicator function χ 50

4.4 Stencil for fourth-order filtering 54

5.1 Coarse and fine images . 59

5.2 University of Bonn Corridor Sequence 61

5.3 University of Tsukuba stereo sequence 61

5.4 Corridor Sequence First Order Disparities 63

5.5 Corridor disparity maps, 9× 9 SSD 65

5.6 Corridor disparity maps, 21× 21 SSD 66

5.7 Corridor disparity maps, 9× 9 NXC 67

5.8 Corridor disparity maps, 21× 21 NXC 68

5.9 Corridor final disparity maps 69

5.10 Corridor sequence evolution 70

5.11 Corridor sequence evolution 71

5.12 Corridor error statistics . 72

5.13 Tsukuba disparity maps, 9× 9 SSD 73

5.14 Tsukuba disparity maps, 21× 21 SSD 74

5.15 Tsukuba disparity maps, 9× 9 NXC 75

101

102 LIST OF FIGURES

5.16 Tsukuba disparity maps, 21× 21 NXC 76

5.17 Tsukuba disparity maps, 21× 21 NXC + 21× 21 dwSSD . . . 77

5.18 Tsukuba final disparity maps 78

5.19 Tsukuba sequence evolution 79

5.20 Tsukuba sequence evolution 80

5.21 Tsukuba error statistics . 81

5.22 Corridor — Global Method 82

5.23 Tsukuba — Global Method 83

5.24 Local/Global Lineup — Best Results 84

A.1 Comparison of penalizations for mixed cases of s and g 91

A.2 Comparison of penalizations for extreme cases of s and g . . . 92

A.3 Corridor Sequence error statistics (different parameters) 95

A.4 Corridor Sequence error statistics (different diffusion methods) 96

List of Tables

3.1 3-D geometry and corresponding first order disparities 31

3.2 3-D geometry and corresponding first order disparities (Ex.) . 31

4.1 Formulation of local method and global differential method . . 41

5.1 Parameters of Local Method 60

5.2 Parameters of Global Method 60

5.3 Corridor AA and BP disparity error statistics 85

5.4 Tsukuba disparity error statistics 86

A.1 Old support and compatibility vs. new support (orig. method) 90

A.2 Old support and compatibility vs. new support (our method) 90

A.3 Geometric Support iterative procedures (Parameter Set 1) . . 93

A.4 Geometric Support iterative procedures (Parameter Set 2) . . 94

103

Index

aperture, 20
aperture problem, 11
artificial intelligence, 12
average absolute (AA) disparity er-

ror, 55
average angular error (AAE), 55

bad matching pixels (BP), 56
biharmonic operator, 51
brightness constancy constraint equa-

tion, 38

camera coordinate system, 21
candidate match, 32
center of projection, 20
central projection, 20
computer vision, 12
conjugated point, 19, 22
cooperative algorithm, 12
cooperative method, 10
coordinate system, 20
cost aggregation, 10
cross correlation (XC), 26

data term, 13
deformed window SSD (dwSSD), 28
difference problem, 41
diffusion, 13
discontinuity preservation, 11
disparity (displacement), 15
disparity space image, 10, 15
displacement vector field, 41, 55
dynamic programming, 11

element-based notation, 18, 19
epipolar constraint, 22, 55
epipolar geometry, 20, 21
epipolar line, 22
epipolar plane, 21

epipole, 22
Euclidean space, 17
Euler-Lagrange (E-L) equation, 40
Euler-Lagrange equation, 51

finite difference approximation, 16
fixed point, 17
focal center, 20
Frobenius norm, 40
frontal parallel plane, 27
frontal parallel plane assumption, 12
functional, 11
fundamental matrix, 22

geometric compatibility, 32
geometric consistency, 32
geometric support, 33
geometric support region (GSR), 34,

62
geometric support space iterative dif-

fusion (GSID), 33, 63
global differential method, 37
global optimization, 11
gradient, 15

Hessian, 16
hierarchical incremental fixed point it-

eration, 41
Horn/Schunck method, 11, 59

image coordinate system, 21
indicator function, 46
Intercept Theorem, 22
interpolation, 10

Laplacian, 51
lens, 20
linear interpolation, 28
linearization, 16

104

INDEX 105

linearized optic flow constraint, 38
local method, 11
local minimum, 40
Lucas/Kanade method, 11

matching cost, 10
mean compensated cross correlation

including normalization, 26
median filter, 10
monocular geometry, 20
monocular vision, 21
motion tensor, 39

neighborhood, 25
normalized cross correlation (NXC),

26

occlusion, 11, 12
optic flow, 37, 38
order of consistency, 45
orthoparallel, 22, 37, 58
overrelaxation parameter, 19

partial derivative, 15
partial differential equation (PDE), 37
perspective projection, 20
pinhole camera model, 20
pixel coordinate system, 20
projection, 20
projective geometry, 21

quadratic form, 38

rectification, 22
regularization parameter, 11, 40
root mean squared (RMS) error, 55

shape-from-shading, 88
stationary iterative method, 17
stencil, 45
sub-pixel accuracy, 37
Successive Over-Relaxation Method (SOR),

19
sum of squared differences (SSD), 25
support region, 10, 56

Taylor series, 16

tensor product, 39
transpose, 16

unit normal vector field, 31

variational method, 37
vector field, 17, 38

warping, 41

	Contents
	Introduction
	Motivation
	Existing Methods
	Problem Formulation
	Overview

	Preliminaries
	Basic Operations and Algorithms
	Camera and Epipolar Geometry

	Local Method
	Region-Based Matching Metrics
	Deformed Window SSD
	Disparity Derivatives Demystified
	Geometric Contextual Information

	Variational Method
	Modeling
	Discretization and Minimization
	Solving

	Experimental Results
	Error Measures
	Parameters and Implementation Details
	Evaluation

	Summary and Outlook
	Diffusion Process in Local Method
	The Problem
	Our Improved Method

